Mikrobiol. Z. 2022; 84(5):58-71.
doi: https://doi.org/10.15407/microbiolj84.05.058

Pentose-Fermenting Yeasts in Nature: Ecology, Biodiversity and Applications

O.D. Ianieva

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine

The world’s energy sector has undergone drastic changes in the last decades due to the climate change and the turn to renewable energy sources. Biomass is the largest renewable source of carbohydrates on the Earth and is an important substrate for biofuel production. Saccharomyces cerevisiae yeasts are the main producer of first-generation ethanol from corn and sugarcane. However, these yeasts lack the ability to utilize the important components of lignocelluloses such as pentoses D-xylose and L-arabinose. Pentose-fermenting yeasts could become an alternative to S. cerevisiae in ethanol production from lignocelluloses. This review focuses on the ecology, geographical distribution, taxonomy, and potential applications of naturally-occurring pentose-fermenting yeasts. Pentose-fermenting yeasts have been frequently found in the lignocelluloseassociated substrates. Decaying and rotten wood and the gut of wood-boring insects are especially important natural reservoirs of this group of yeasts. Simple sugars xylose and L-arabinose would be present in such habitats as suitable nutrients for pentose-assimilating yeasts. The other natural habitats reported for pentose-fermenting yeasts are soil, plants, and herbivore faeces. Pentose-fermenting yeasts are found in many geographical regions and have been isolated on almost each continent. Dozens of novel pentose-fermenting yeast species have been discovered in the last decade. The previously poorly explored regions, including Brazil, China, and several Asian countries were especially oft en reported as sites of isolation of such yeasts. Most xylose-fermenting yeasts belong to genera Scheffersomyces, Candida, Spathaspora, Sugiyamaella, and Pachysolen, while the most efficient ethanol producers are represented by species Scheffersomyces stipitis and Spathaspora passalidarum. The vast majority of research on the biotechnological application of pentose-fermenting yeasts focuses on their role in the production of bioethanol from lignocellulose. This group of yeasts could be either directly involved in the fermentation stage of ethanol production or serve as a source of genetic material for the genetic manipulation of other industrial yeast strains. Pentose-fermenting yeasts could also be involved in the production of various chemicals from lignocellulosic substrates, mainly polyols, xylitol, and arabitol. Thus, the search for novel pentose-fermenting yeasts that could become new efficient ethanol producers or donors of new genetic material is still ongoing. The previously unexplored or poorly studied geographical regions and natural habitats can hide many novel yeasts with huge biotechnological potential.

Keywords: yeasts, pentose fermentation, ecology, application of yeasts.

Full text

  1. Mahapatra S, Kumar D, Singh B, Sachan PK. Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus. 2021; 4:100036. https://doi.org/10.1016/j.nexus.2021.100036
  2. Ayodele BV, Alsaffar MA, Mustapa SI. An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J Clean Prod. 2020; 245:118857. https://doi.org/10.1016/j.jclepro.2019.118857
  3. Cadete RM, Lopes MR, Rosa CA. Yeasts associated with decomposing plant material and rotting wood. In: Buzzini P, Lachance M-A, Yurkov A, editors. Yeasts in Natural Ecosystems: Diversity. Cham: Springer International Publishing; 2017. p. 265—92. https://doi.org/10.1007/978-3-319-62683-3_9
  4. Farias D, de Mélo AHF, da Silva MF, Bevilaqua GC, Ribeiro DG, Goldbeck R, et al. New biotechnological opportunities for C5 sugars from lignocellulosic materials. Bioresour Technol Rep. 2022; 17:100956. https://doi.org/10.1016/j.biteb.2022.100956
  5. Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, et al. Yeasts in sustainable bioethanol production: A review. Biochem and Biophys Rep. 2017; 10:52—61. https://doi.org/10.1016/j.bbrep.2017.03.003
  6. Ceccato-Antonini SR, Codato CB, Martini C, Bastos RG, Tauk-Tornisielo SM. Yeast for pentose fermentation: Isolation, screening, performance, manipulation, and prospects. In: Buckeridge MS, De Souza AP, editors. Advances of basic science for second generation bioethanol from sugarcane. Cham: Springer International Publishing; 2017. p. 133—57. https://doi.org/10.1007/978-3-319-49826-3_8
  7. Harner NK, Wen X, Bajwa PK, Austin GD, Ho C-Y, Habash MB, et al. Genetic improvement of native xylosefermenting yeasts for ethanol production. J Ind Microbiol Biotechnol. 2015; 42(1):1—20. https://doi.org/10.1007/s10295-014-1535-z
  8. Oh EJ, Jin Y-S. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res. 2020; 20(1):foz089. https://doi.org/10.1093/femsyr/foz089
  9. Barnett JA. The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem. 1976; 32:125—234. https://doi.org/10.1016/S0065-2318(08)60337-6
  10. Toivola A, Yarrow D, van den Bosch E, van Dijken JP, Scheffers WA. Alcoholic fermentation of d-Xylose by yeasts. Appl Environ Microbiol. 1984; 47(6):1221—3. https://doi.org/10.1128/aem.47.6.1221-1223.1984
  11. du Preez JC, Prior BA. A quantitative screening of some xylose-fermenting yeast isolates. Biotechnol Lett. 1985; 7(4):241—6. https://doi.org/10.1007/BF01042370
  12. Nigam JN, Ireland RS, Margaritis A, Lachance MA. Isolation and screening of yeasts that ferment d-Xylose directly to ethanol. Appl Environ Microbiol. 1985; 50(6):1486—9. https://doi.org/10.1128/aem.50.6.1486-1489.1985
  13. Cadete RM, Melo MA, Dussán KJ, Rodrigues RCLB, Silva SS, Zilli JE, et al. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian forest. PLOS ONE. 2012; 7(8):e43135. https://doi.org/10.1371/journal.pone.0043135
  14. Morais CG, Cadete RM, Uetanabaro APT, Rosa LH, Lachance M-A, Rosa CA. D-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic Rainforest habitats in Brazil. Fungal Genet Biol. 2013; 60:19—28. https://doi.org/10.1016/j.fgb.2013.07.003
  15. Morais CG, Sena LMF, Lopes MR, Santos ARO, Barros KO, Alves CR, et al. Production of ethanol and xylanolytic enzymes by yeasts inhabiting rotting wood isolated in sugarcane bagasse hydrolysate. Fungal Biol. 2020; 124(7):639—47. https://doi.org/10.1016/j.funbio.2020.03.005
  16. Ren Y, Chen L, Niu Q, Hui F. Description of Scheffersomyces henanensis sp. nov., a new D-xylose-fermenting yeast species isolated from rotten wood. PLoS One. 2014; 9(3):e92315. https://doi.org/10.1371/journal.pone.0092315
  17. Suh S-O, Marshall CJ, McHugh JV, Blackwell M. Wood ingestion by passalid beetles in the presence of xylosefermenting gut yeasts. Mol Ecol. 2003; 12(11):3137—45. https://doi.org/10.1046/j.1365-294X.2003.01973.x
  18. Nguyen NH, Suh S-O, Marshall CJ, Blackwell M. Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol Res. 2006; 110(Pt 10):1232—41. https://doi.org/10.1016/j.mycres.2006.07.002
  19. Urbina H, Schuster J, Blackwell M. The gut of Guatemalan passalid beetles: a habitat colonized by cellobiose- and xylose-fermenting yeasts. Fungal Ecol. 2013; 6(5):339—55. https://doi.org/10.1016/j.funeco.2013.06.005
  20. Ali SS, Wu J, Xie R, Zhou F, Sun J, Huang M. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS One. 2017; 12(7):e0181141. https://doi.org/10.1371/journal.pone.0181141
  21. van der Walt JP, Ferreira NP, Steyn RL. Candida lyxosophila sp. nov., a new D-xylose fermenting yeast from southern Africa. Antonie Van Leeuwenhoek. 1987; 53(2):93—7. https://doi.org/10.1007/BF00419505
  22. Watanabe I, Ando A, Nakamura T. Characterization of Candida sp. NY7122, a novel pentose-fermenting soil yeast. J Ind Microbiol Biotechnol. 2012; 39(2):307—15. https://doi.org/10.1007/s10295-011-1033-5
  23. Nitiyon S, Khunnamwong P, Lertwattanasakul N, Limtong S. Candida kantuleensis sp. nov., a d-xylose-fermenting yeast species isolated from peat in a tropical peat swamp forest. Int J Syst Evol Microbiol. 2018; 68(7):2313—8. https://doi.org/10.1099/ijsem.0.002835
  24. Cadete RM, Melo MA, Zilli JE, Vital MJ, Mouro A, Prompt AH, Gomes FC, Stambuk BU, Lachance MA, Rosa CA. Spathaspora brasiliensis sp. nov., Spathaspora suhii sp. nov., Spathaspora roraimanensis sp. nov. and Spathaspora xylofermentans sp. nov., four novel (D)-xylose-fermenting yeast species from Brazilian Amazonian forest. Antonie Van Leeuwenhoek. 2013; 103(2):421—31. https://doi.org/10.1007/s10482-012-9822-z
  25. Cadete RM, Santos RO, Melo MA, Mouro A, Gonçalves DL, Stambuk BU, et al. Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res. 2009; 9(8):1338—42. https://doi.org/10.1111/j.1567-1364.2009.00582.x
  26. Lopes MR, Morais CG, Kominek J, Cadete RM, Soares MA, Uetanabaro APT, et al. Genomic analysis and Dxylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae f. a., sp. nov. and Spathaspora gorwiae f. a., sp. nov. FEMS Yeast Res. 2016; 16(4):fow044. https://doi.org/10.1093/femsyr/fow044
  27. Guamán-Burneo MC, Dussán KJ, Cadete RM, Cheab MAM, Portero P, Carvajal-Barriga EJ, et al. Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov. Antonie Van Leeuwenhoek. 2015;108(4):919—31. https://doi.org/10.1007/s10482-015-0546-8
  28. Kordowska-Wiater M, Kuzdraliński A, Czernecki T, Targoński Z, Frąc M, Oszust K. The ability of a Novel strain Scheffersomyces (Syn. Candida) shehatae isolated from rotten wood to produce arabitol. Pol J Microbiol. 2017; 66(3):335—43. https://doi.org/10.5604/01.3001.0010.4863
  29. Shi C-F, Zhang K-H, Chai C-Y, Yan Z-L, Hui F-L. Diversity of the genus Sugiyamaella and description of two new species from rotting wood in China. MycoKeys. 2021; 77:27—39. https://doi.org/10.3897/mycokeys.77.60077
  30. Jia R-R, Lv S-L, Chai C-Y, Hui F-L. Three new Scheffersomyces species associated with insects and rotting wood in China. MycoKeys. 2020; 71:87—99. https://doi.org/10.3897/mycokeys.71.56168
  31. Ianieva OD, Fomina MO, Babich TV, Dudka GP, Pidgorsky VS. Evaluation of non-conventional yeasts isolated from rotten wood for hydrolytic activities and xylose fermentation. Mikrobiol Z. 2022; 84(4):88—97. https://doi.org/10.15407/microbiolj84.04.088
  32. Nweze JE, Ndubuisi I, Murata Y, Omae H, Ogbonna JC. Isolation and evaluation of xylose-fermenting thermotolerant yeasts for bioethanol production. Biofuels. 2021;12(8):961—70. https://doi.org/10.1080/17597269.2018.1564480
  33. Valinhas RV, Pantoja LA, Maia ACF, Miguel MGCP, Vanzela APFC, Nelson DL, et al. Xylose fermentation to ethanol by new Galactomyces geotrichum and Candida akabanensis strains. PeerJ. 2018; 6:e4673. https://doi.org/10.7717/peerj.4673
  34. Barretto DA, Avchar R, Carvalho C, Sampaio JP, Vootla SK, Baghela A. Blastobotrys bombycis sp. nov., a dxylose-fermenting yeast isolated from the gut of the silkworm larva Bombyx mori. Int J Syst Evol Microbiol. 2018; 68(8):2638—43. https://doi.org/10.1099/ijsem.0.002890
  35. Kurtzman CP, Dien BS. Candida arabinofermentans, a new L-arabinose fermenting yeast. Antonie Van Leeuwenhoek. 1998; 74(4):237—43. https://doi.org/10.1023/A:1001799607871
  36. Wang Y, Ren Y-C, Zhang Z-T, Ke T, Hui F-L. Spathaspora allomyrinae sp. nov., a d-xylose-fermenting yeast species isolated from a scarabeid beetle Allomyrina dichotoma. Int J Syst Evol Microbiol. 2016; 66(5):2008—12. https://doi.org/10.1099/ijsem.0.000979
  37. Liu X-J, Cao W-N, Ren Y-C, Xu L-L, Yi Z-H, Liu Z, et al. Taxonomy and physiological characterisation of Scheffersomyces titanus sp. nov., a new D-xylose-fermenting yeast species from China. Sci Rep. 2016; 6(1):32181. https://doi.org/10.1038/srep32181
  38. Lorliam W, Akaracharanya A, Jindamorakot S, Suwannarangsee S, Tanasupawat S. Characterization of xyloseutilizing yeasts isolated from herbivore faeces in Thailand. ScienceAsia. 2013; 39. https://doi.org/10.2306/scienceasia1513-1874.2013.39.026
  39. Makhuvele R, Ncube I, Jansen van Rensburg EL, La Grange DC. Isolation of fungi from dung of wild herbivores for application in bioethanol production. Braz J Microbiol. 2017; 48(4):648—55. https://doi.org/10.1016/j.bjm.2016.11.013
  40. Dien BS, Kurtzman CP, Saha BC, Bothast RJ. Screening for L-arabinose fermenting yeasts. Appl Biochem Biotechnol. 1996; 57—58:233—42. https://doi.org/10.1007/BF02941704
  41. Moremi M, Jansen van Rensburg E, La Grange D. The Improvement of bioethanol production by pentose-fermenting yeasts isolated from herbal preparations, the gut of dung beetles, and marula wine. Int J Microbiol. 2020; 2020:13. https://doi.org/10.1155/2020/5670936
  42. Kurtzman CP. Chapter 65 — Scheffersomyces Kurtzman & M. Suzuki. In: Kurtzman CP, Fell JW, Boekhout T, editors. The Yeasts (Fifth Edition). London: Elsevier; 2011. p. 773—7. https://doi.org/10.1016/B978-0-444-52149-1.00065-3
  43. Morais CG, Batista TM, Kominek J, Borelli BM, Furtado C, Moreira RG, et al. Spathaspora boniae sp. nov., a D-xylose-fermenting species in the Candida albicans/Lodderomyces clade. Int J Syst Evol Microbiol. 2017; 67(10):3798—805. https://doi.org/10.1099/ijsem.0.002186
  44. Sena LMF, Morais CG, Lopes MR, Santos RO, Uetanabaro APT, Morais PB, et al. D-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella. Antonie Van Leeuwenhoek. 2017; 110(1):53—67. https://doi.org/10.1007/s10482-016-0775-5
  45. Rao RS, Bhadra B, Shivaji S. Isolation and characterization of ethanol-producing yeasts from fruits and tree barks. Lett Appl Microbiol. 2008; 47(1):19—24. https://doi.org/10.1111/j.1472-765X.2008.02380.x
  46. Kaewwichian R, Khunnamwong P, Am-In S, Jindamorakot S, Groenewald M, Limtong S. Candida xylosifermentans sp. nov., a d-xylose-fermenting yeast species isolated in Thailand. Int J Syst Evol Microbiol. 2019; 69(9):2674—80. https://doi.org/10.1099/ijsem.0.003505
  47. Urbina H, Blackwell M. Multilocus phylogenetic study of the Scheffersomyces yeast clade and characterization of the N-terminal region of xylose reductase gene. PloS one. 2012; 7:e39128. https://doi.org/10.1371/journal.pone.0039128
  48. Lopes MR, Batista TM, Franco GR, Ribeiro LR, Santos ARO, Furtado C, et al. Scheffersomyces stambukii f.a., sp. nov., a d-xylose-fermenting species isolated from rotting wood. Int J Syst Evol Microbiol. 68(7):2306—12. https://doi.org/10.1099/ijsem.0.002834
  49. Lv S-L, Chai C-Y, Wang Y, Yan Z-L, Hui F-L. Five new additions to the genus Spathaspora (Saccharomycetales, Debaryomycetaceae) from southwest China. MycoKeys. 2020; 75:31—49. https://doi.org/10.3897/mycokeys.75.57192
  50. Karczewska H. Some observations on pentose utilization by Candida tropicalis. Comptes-rendus des travaux du Laboratoire Carlsberg. 1958; 31:251—258.
  51. Jeffries T, Kurtzman C. Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzyme Microb Technol. 1994; 16:922—932. https://doi.org/10.1016/0141-0229(94)90001-9
  52. Jeffries TW, Van Vleet JRH. Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res. 2009; 9(6):793—807. https://doi.org/10.1111/j.1567-1364.2009.00525.x
  53. Agbogbo FK, Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett. 2008; 30(9):1515—24. https://doi.org/10.1007/s10529-008-9728-z
  54. Ishizaki H, Hasumi K. Ethanol Production from Biomass. In: Research Approaches to Sustainable Biomass Systems. 2014. p. 243—58. https://doi.org/10.1016/B978-0-12-404609-2.00010-6
  55. Lachance M-A, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP. Chapter 90 — Candida Berkhout (1923). In: Kurtzman CP, Fell JW, Boekhout T, editors. The Yeasts (Fifth Edition). London: Elsevier; 2011. p. 987—1278. https://doi.org/10.1016/B978-0-444-52149-1.00090-2
  56. Cadete RM, Rosa CA. The yeasts of the genus Spathaspora: potential candidates for second-generation biofuel production. Yeast. 2018; 35(2):191—9. https://doi.org/10.1002/yea.3279
  57. da Cunha-Pereira F, Hickert LR, Sehnem NT, de Souza-Cruz PB, Rosa CA, Ayub MAZ. Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their cofermentations. Bioresour Technol. 2011; 102(5):4218—25. https://doi.org/10.1016/j.biortech.2010.12.060
  58. Veras HCT, Parachin NS, Almeida JRM. Comparative assessment of fermentative capacity of different xyloseconsuming yeasts. Microb Cell Fact. 2017; 16(1):153. https://doi.org/10.1186/s12934-017-0766-x
  59. Su Y-K, Willis LB, Jeffries TW. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Biotechnol Bioeng. 2015; 112(3):457—69. https://doi.org/10.1002/bit.25445
  60. Kurtzman CP. Chapter 72 — Sugiyamaella Kurtzman & Robnett (2007). In: Kurtzman CP, Fell JW, Boekhout T, editors. The Yeasts (Fifth Edition). London: Elsevier; 2011. p. 817—22. https://doi.org/10.1016/B978-0-444-52149-1.00072-0
  61. Kurtzman CP. Chapter 54 — Pachysolen Boidin & Adzet (1957). In: Kurtzman CP, Fell JW, Boekhout T, editors. The Yeasts (Fifth Edition). London: Elsevier; 2011. p. 673—5. https://doi.org/10.1016/B978-0-444-52149-1.00054-9
  62. Slininger PJ, Bothast RJ, Van Cauwenberge JE, Kurtzman CP. Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol Bioeng. 1982; 24(2):371—84. https://doi.org/10.1002/bit.260240210
  63. Muthusamy S, Ramesh S, Jaya N, Jabasingh S. Prospective evaluation of xylitol production using Dabaryomyces hansenii var. hansenii, Pachysolen tannophilus, and Candida guillermondii with sustainable agricultural residues. Biomass Convers Biorefi nery. 2021.
  64. Sánchez S, Bravo V, Castro E, Moya AJ, Camacho F. The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J Chem Technol Biotechnol. 2002; 77(6):641—8. https://doi.org/10.1002/jctb.622
  65. Skoog K, Hahn-Hägerdal B, Degn H, Jacobsen JP, Jacobsen HS. Ethanol Reassimilation and ethanol tolerance in Pichia stipitis CBS 6054 as studied by 13C nuclear magnetic resonance spectroscopy. Appl Environ Microbiol. 1992; 58(8):2552—8. https://doi.org/10.1128/aem.58.8.2552-2558.1992
  66. Delgenes JP, Moletta R, Navarro JM. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol. 1996; 19(3):220—5. https://doi.org/10.1016/0141-0229(95)00237-5
  67. Morales P, Gentina JC, Aroca G, Mussatto SI. Development of an acetic acid tolerant Spathaspora passalidarum strain through evolutionary engineering with resistance to inhibitors compounds of autohydrolysate of Eucalyptus globulus. Ind Crop Prod. 2017; 106:5—11. https://doi.org/10.1016/j.indcrop.2016.12.023
  68. Pacheco TF, Machado BRC, de Morais Júnior WG, Almeida JRM, Gonçalves SB. Enhanced tolerance of Spathaspora passalidarum to sugarcane bagasse hydrolysate for ethanol production from xylose. Appl Biochem Biotechnol. 2021; 193(7):2182—97. https://doi.org/10.1007/s12010-021-03544-6
  69. Bonan CIDG, Tramontina R, dos Santos MW, Biazi LE, Soares LB, Pereira IO, et al. Biorefi nery platform for Spathaspora passalidarum NRRL Y-27907 in the production of ethanol, xylitol, and single cell protein from sugarcane bagasse. Bioenerg Res. 2021. https://doi.org/10.1007/s12155-021-10255-7
  70. Silva DDV, Dussán KJ, Idarraga A, Grangeiro L, Silva SS, Cardona CA, et al. Production and purification of xylitol by Scheffersomyces amazonenses via sugarcane hemicellulosic hydrolysate. Biofuels, Bioproducts and Biorefining. 2020; 14(2):344—56. https://doi.org/10.1002/bbb.2085
  71. Dall Cortivo PR, Hickert LR, Rosa CA, Záchia Ayub MA. Conversion of fermentable sugars from hydrolysates of soybean and oat hulls into ethanol and xylitol by Spathaspora hagerdaliae UFMG-CM-Y303. Industrial Crops and Products. 2020; 146:112218. https://doi.org/10.1016/j.indcrop.2020.112218
  72. Ramesh S, Muthuvelayudham R, Rajesh Kannan R, Viruthagiri T. Enhanced production of xylitol from corncob by Pachysolen tannophilus using response surface methodology. Int J Food Sci. 2013; 2013:e514676. https://doi.org/10.1155/2013/514676
  73. Muthusamy S, Ramesh S, Jaya N, Jabasingh S. Prospective evaluation of xylitol production using Dabaryomyces hansenii var hansenii, Pachysolen tannophilus, and Candida guillermondii with sustainable agricultural residues. Biomass Convers Biorefi nery. 2021.
  74. Patelski P, Berłowska J, Balcerek M, Dziekońska-Kubczak U, Pielech-Przybylska K, Dygas D, Jędrasik J. Conversion of Potato Industry Waste into Fodder Yeast Biomass. Processes. 2020; 8(4):453. https://doi.org/10.3390/pr8040453