Mikrobiol. Z. 2022; 84(5):48-57.
doi: https://doi.org/10.15407/microbiolj84.05.048

Properties of Pyocin S9 from Pseudomonas aeruginosa UCM В-333

O.B. Balko1, L.B. Zelena1, O.I. Balko1, L.O. Maksymenko1, V.G. Voitsekhovsky2, L.V. Avdeeva1

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine

2Bohomolets National Medical University
13 Taras Shevchenko Blvd., Kyiv, 01601, Ukraine

The deposited by us highly active bacteriocin producer Pseudomonas aeruginosa UСM B-333 synthesizes pyocins, which intensively inhibit phytopathogenic strains of Pseudomonas syringae — plant pathogens. This strain produces pyocins S1 and S5, as well as microcin-II-like bacteriocins. The aim of this work was to check the presence of other pyocins in P. aeruginosa UCM B-333. Methods. The concentrated bacterial lysate of P. aeruginosa UCM B-333 was separated by ion-exchange chromatography on DEAE cellulose. The fraction with studied bacteriocin was further purified by gel filtration on Sephadex G-75. To determine the belonging of investigated pyocin to a certain subtype, its molecular weight, antimicrobial activity, kinetics of the effect on sensitive microorganisms, and serological homology with carotovoricins of Pectobacterium carotovorum were studied as well as the ability to interact with siderophore receptors and nuclease activity were tested. Results. The isolated pyocin is a protein with a molecular weight of the active part of pyocin of 43.4 kDa and an immune protein — of 9 kDa. Th is substance is characterized by nonspecific DNase activity and affects sensitive cells by the single-hit response kinetics of influence through binding to receptors that are not concerned with iron transport. The revealed pyocin is not related to carotovoricins, its activity spectrum is close to other pyocins’ activities, and it affects clinical multidrug-resistant strains of Pseudomonas aeruginosa. The induction mechanism of this bacteriocin may be different from that described for other pyocins and not concerned with the RecA system. The determination of factors that stimulate the expression of pyocin S9 requires further study. Conclusions. According to the established properties, the studied substance is the closest to the foreseen pyocin S9.

Keywords: pyocin S9, Pseudomonas aeruginosa, nuclease activity, serological homology with carotovoricins, interaction with siderophore receptors.

Full text

  1. de Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, et al. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev. 2020; 33:e00181-19. https://doi.org/10.1128/CMR.00181-19
  2. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, et al. Epidemiology and treatment of multidrug-resistant and extensively drugresistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019; 32:e00031-19. https://doi.org/10.1128/CMR.00031-19
  3. Kaszab E, Radó J, Kriszt B, Pászti J, Lesinszki V, et al. Groundwater, soil and compost, as possible sources of virulent and antibiotic-resistant Pseudomonas aeruginosa. Int J Environ Health Res. 2021; 31(7):848—860. https://doi.org/10.1080/09603123.2019.1691719
  4. Garrity GM, Brenner DJ, Krieg NR, Staley JR. Bergey’s manual of systematic bacteriology. 2nd ed. Vol. 2B. The Gammaproteobacteria. New York: Springer; 2005. https://doi.org/10.1007/0-387-28021-9
  5. Cabot G, Zamorano L, Moyà B, Juan C, Navas A, et al. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob Agents Chemother. 2016; 60(3):1767—1778. https://doi.org/10.1128/AAC.02676-15
  6. Kaszab E, Kriszt B, Atzél B, Szabó G, Szabó I, et al. The occurrence of multidrug-resistant Pseudomonas aeruginosa on hydrocarbon-contaminated sites. Microb Ecol. 2010; 59(1):37—45. https://doi.org/10.1007/s00248-009-9551-7
  7. Ebadi A, Khoshkholgh SNA, Olamaee M, Hashemi M, Ghorbani NR. Effective bioremediation of a petroleumpolluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium. J Adv Res. 2017; 8:627—633. https://doi.org/10.1016/j.jare.2017.06.008
  8. Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, et al. Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol. 2017; 8:1895. https://doi.org/10.3389/fmicb.2017.01895
  9. Kato J, Kim HE, Takiguchi N, Kuroda A, Ohtake H. Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviors in ecosystem. J Biosci Bioeng. 2008; 106(1):1—7. https://doi.org/10.1263/jbb.106.1
  10. Frank DW. Research topic on Pseudomonas aeruginosa, biology, genetics, and host—pathogen interactions. Front Microbiol. 2012; 3:4—5. https://doi.org/10.3389/fmicb.2012.00020
  11. Soltani S, Hammami R, Cotter PD, Rebuffat S, Ben Said L, et al. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Lett. 2021; 45(1):fuaa039. https://doi.org/10.1093/femsre/fuaa039
  12. Ghequire MGK, de Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev. 2014; 38:38523—38568. https://doi.org/10.1111/1574-6976.12079
  13. Balko OB. Low molecular weight Pseudomonas aeruginosa bacteriocins. Mikrobiol Z. 2019; 81(6):97—109. https://doi.org/10.15407/microbiolj81.06.097
  14. Balko OB. Interaction between S-Type Pyocins and Microcin-II-Like Bacteriocins in Pseudomonas aeruginosa. Mikrobiol Z. 2021; 83(3):72—80. https://doi.org/10.15407/microbiolj83.03.072
  15. Rooney WM, Chai R, Milner JJ, Walker D Bacteriocins Targeting Gram-Negative Phytopathogenic Bacteria: Plantibiotics of the Future. Front Microbiol. 2020; 11:575981. https://doi.org/10.3389/fmicb.2020.575981
  16. Michel-Briand Y, Baysse C. The pyocins of Pseudomonas aeruginosa. Biochimie. 2002; 84:499—510. https://doi.org/10.1016/S0300-9084(02)01422-0
  17. Ling H, Saeidi N, Rasouliha BH, Chang MW. A predicted S-type pyocin shows a bactericidal activity against clinical Pseudomonas aeruginosa isolates through membrane damage. FEBS Lett. 2010; 584(15):3354—3358. https://doi.org/10.1016/j.febslet.2010.06.021
  18. Balko OB, Balko OI, Zelena LB, Pasichnyk LA, Avdeeva LV. Method of plant protecting from bacterial pathogen Pseudomonas syringae. Pat. 120295 UA, MPK A01N 25/00, C12R 1/38,  2R 1/385, C12N 1/20 — Publ. 11.11.2019, Bul. N21.
  19. Dingemans J, Ghequire mgK, Craggs M, De Mot R, Cornelis P. Identification and functional analysis of a bacteriocin, pyocin S6, with ribonuclease activity from a Pseudomonas aeruginosa cystic fibrosis clinical isolate. MicrobiologyOpen. 2016; 5(3):413—23. https://doi.org/10.1002/mbo3.339
  20. Turano H, Gomes F, Barros-Carvalho GA, Lopes R, Cerdeira L, et al. Tn 6350, a Novel Transposon Carrying Pyocin S8 Genes Encoding a Bacteriocin with Activity against Carbapenemase-Producing Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017; 61(5):e00100-17. https://doi.org/10.1128/AAC.00100-17
  21. Balko AB, Avdeeva LV. [Screening of producers of bacteriocin-like substances active against Pseudomonas aeruginosa]. Mikrobiol Z. 2012; 74(2):8—13. Russian.
  22. Balko AB, Vidasov VV, Avdeeva LV. [Optimization of conditions of Pseudomonas aeruginosa bacteriocin induction]. Mikrobiol Z. 2013; 75(1):79—85. Russian.
  23. Sano Y, Kageyama M. Purification and Properties of an S-Type Pyocin, Pyocin AP41. J Bacteriol. 1981; 146(2):733—739. https://doi.org/10.1128/jb.146.2.733-739.1981
  24. Ito S, Kageyama M, Egami F. Isolation and characterization of pyocins from several trains of Pseudomonas aeruginosa. J Gen Appl Microbiol. 1970; 16(3):205—214. https://doi.org/10.2323/jgam.16.3_205
  25. Kruger NJ. Th e Bradford Method for Protein Quantitation. In: Walker JM, editor. Basic Protein and Peptide Protocols. Methods in Molecular Biology, vol. 32. Humana Press; 1994. p. 9—15. https://doi.org/10.1385/0-89603-268-X:9
  26. Saeed S, Rasool AJ, Ahmed S, Khanum T, Khan MB, et al. New insight in Staphylococcin reseach: Bacteriocin and/or BLIS produced by S. aureus AB188. W J Microbial Biotech. 2006; 22(7):713—722. https://doi.org/10.1007/s11274-005-9095-z
  27. Elfarash A, Dingemans J, Ye L, Hassan AA, Craggs M, et al. Pore-forming pyocin S5 utilizes the FptA ferripyochelin  receptor to kill Pseudomonas aeruginosa. Microbiology. 2014; 2:261—269. https://doi.org/10.1099/mic.0.070672-0
  28. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature. 1970; 227(5259):680—685. https://doi.org/10.1038/227680a0
  29. Sano Y, Matsui H, Kobayashi M, Kageyama M. Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J Bacteriol. 1993; 175(10):2907—16. https://doi.org/10.1128/jb.175.10.2907-2916.1993
  30. Tovkach FI. De Defective lysogeny in Erwinia carotovora. Mikrobiologiia. 2002; 71(3):359—367.
  31. Maksymenko LO. Morpho-structural, killer and serological properties of macromolecular bacteriocins of Pectobacterium carotovorum subsp. carotovorum and their relatedness to bacteriophage ZF40. Microbiology & Biotechnology. 2020; 2:44—56. https://doi.org/10.18524/2307-4663.2020.2(49).204270
  32. Chuang D-Y, Chien Y-C, Wu H-P. Cloning and Expression of the Erwinia carotovora subsp. carotovora Gene Encoding the Low-Molecular-Weight Bacteriocin Carocin S1. J Bacteriol. 2007; 189(2):620—626. https://doi.org/10.1128/JB.01090-06
  33. Behrens HM, Lowe ED, Gault J, Housden ng, Kaminska R, et al. Pyocin S5 Import into Pseudomonas aeruginosa Reveals a Generic Mode of Bacteriocin Transport. MBio. 2020; 11: e03230-19. https://doi.org/10.1128/mBio.03230-19
  34. White P, Joshi A, Rassam P, Housden NG, Kaminska R, et al. Exploitation of an iron transporter for bacterial protein antibiotic import. PNAS. 2017; 114(45):12051—12056. https://doi.org/10.1073/pnas.1713741114