Mikrobiol. Z. 2022; 84(5):10-20.
doi: https://doi.org/10.15407/microbiolj84.05.010

The Effect of Polystyrene Foam on the White Mice’s Intestinal Microbiota

M.V. Bilan1, M.A. Lieshchova1, V.V. Brygadyrenko1,2, V.E. Podliesnova3

1Dnipro State Agrarian and Economic University
25 Serhii Yefremov Str., Dnipro, 49600, Ukraine

2Oles Honchar Dnipro National University
72 Haharyna Ave., Dnipro, 49000, Ukraine

3University of Tartu
18 University of Tartu, Tartu, 50090, Estonia

Millions of tons of microplastics get into the environment, being eaten by many species of mammals and humans. One of the main types of plastic, polystyrene, and its monomer, bisphenol, have been fairly well studied in terms of their effects on metabolism, but changes in the intestinal microbiota under the influence of its addition to the diet remain insufficiently studied. The aim of this article is to describe the changes in the main components of the mice intestinal microbiota in the conditions of adding different concentrations of crushed polystyrene foam to their diet. Methods. Four groups of white laboratory mice ate crushed particles of polystyrene foam (10% of the polymer by weight of the feed, 1%, 0.1%, and the control group — without addition of plastic) as part of the compound feed for 42 days. At the end of the experiment, cultures of animal feces samples were analyzed. Results. Polystyrene foam particles in the main mice diet, especially at a higher concentration (10%), have changed the number.

Keywords: polymer, plastics, polystyrene, pollution, gut microbiota, dysbiosis mice.

Full text

  1. Plastics Atlas. Facts and figures about the world of synthetic polymers. Second Edition. Berlin: Heinrich Boll Foundation, 2019.
  2. Andrady AL, Neal MA. Applications and societal benefits of plastics. Phil Trans R Soc. 2009; B364:1977—84. https://doi.org/10.1098/rstb.2008.0304
  3. Engler RE. The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol. 2012; 46:12302—15. https://doi.org/10.1021/es3027105
  4. Halden RU. Plastics and health risks. Annu Rev Public Health 2010; 31:179—94. https://doi.org/10.1146/annurev.publhealth.012809.103714
  5. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Lavender Law K. Plastic waste in puts from land into the ocean. Science 2015; 347:768—71. https://doi.org/10.1126/science.1260352
  6. Zubris KAV, Richards BK. Synthetic fibers as an indicator of land application of sludge. Environ Pollut. 2005;138:201—11. https://doi.org/10.1016/j.envpol.2005.04.013
  7. Brinton WF. Characterization of man-made foreign matter and its presence in multiple size fractions from mixed waste composting. Compost Sci Util. 2005;13:274—80. https://doi.org/10.1080/1065657X.2005.10702251
  8. Thompson R, Moore C, Andrady A, Gregory M, Takada H, Weisberg S. New directions in plastic debris. Science. 2005; 310:1117. https://doi.org/10.1126/science.310.5751.1117b
  9. Liboiron M. Redefining pollution and action: the matter of plastics. J Mater Cult. 2016; 21:87—110. https://doi.org/10.1177/1359183515622966
  10. Matiella JE, Hsieh TC. Volatile compounds in scrambled eggs. J Food Sci. 1991; 56(2):387—90. https://doi.org/10.1111/j.1365-2621.1991.tb05286.x
  11. Sanjay K, Mridula R, Rajesh K, Suyani N, Ahamed RA. Impact of microplastics on aquatic organisms and human health: a review. Int J Environ Sci Nat Res. 2020; 26(2):556185. https://doi.org/10.19080/IJESNR.2020.26.556184
  12. Koch HM, Calafat AM. Human body burdens of chemicals used in plastics manufacture. Philos Trans R Soc B 2009; 364:2063—78. https://doi.org/10.1098/rstb.2008.0208
  13. Thompson RC, Moore CJ, Saal Vom FS, Swan SH. Plastics, the environment and human health: current consensus and future trends. Phil Trans R Soc B 2009;1:1—14. https://doi.org/10.1098/rstb.2009.0053
  14. Farrelly TA, Shaw IC. Polystyrene as hazardous household waste. In: mMereki D, editor. Household hazardous waste management. London: IntechOpen; 2017. p. 45—60. https://doi.org/10.5772/65865
  15. Turner A. Foamed polystyrene in the marine environment: sources, additives, transport, behavior, and  mpacts. Environ Sci Technol. 2020; 54(17):10411—20. https://doi.org/10.1021/acs.est.0c03221
  16. Moore CJ. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res. 2008; 108(2):131—9. https://doi.org/10.1016/j.envres.2008.07.025
  17. Lambert S, Wagner M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere. 2016; 145:265—8. https://doi.org/10.1016/j.chemosphere.2015.11.078
  18. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High through put diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 2008; 57:1605—1615. https://doi.org/10.1136/gut.2007.133603
  19. Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol Mech Dis. 2012; 7: 99—122. https://doi.org/10.1146/annurev-pathol-011811-132421
  20. Koppel N, Rekdal VM, Balskuset EP. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017; 356:1—11. https://doi.org/10.1126/science.aag2770
  21. Lu L, Wan Z, Luo T, Fu Z, Jin Y. Polystyrene microplastics induce gut microbiota PAR and hepatic lipid metabolism disorder in mice. Sci Total Environ. 2018; 631—632:449—58. https://doi.org/10.1016/j.scitotenv.2018.03.051
  22. Atashgahi S, Shetty SA, Smidt H, de Vos WM. Flux, impact, and fate of halogenated xenobiotic compounds in the gut. Front Physiol. 2018; 9:888. https://doi.org/10.3389/fphys.2018.00888
  23. Jin Y, Lu L, Tu W, Luo T, Fu Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ. 2019; 649:308—17. https://doi.org/10.1016/j.scitotenv.2018.08.353
  24. Tamargo A, Molinero N, Reinosa JJ, Alcolea-Rodriguez V, Portela R, Bañares MA, Fernández JF, Moreno-Arribas MV. PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Sci Rep. 2022;12(1):528. https://doi.org/10.1038/s41598-021-04489-w
  25. Galloway TS. Micro- and nano-plastics and human health. In: Bergmann M, Gutow L, Klages M, editors. Marine anthropogenic litter. Cham: Springer; 2015:343—66. https://doi.org/10.1007/978-3-319-16510-3_13
  26. Bilan MV, Lieshchova MA, Tishkina nm, Brygadyrenko VV. Combined effect of glyphosate, saccharin and sodium benzoate on the gut microbiota of rats. Regul Mech Biosyst. 2019;10(2):228—32. https://doi.org/10.15421/021934
  27. Makarova M, Kryshen K, Alyakrinskaya A, Rybakova A, Makarov V. Characteristics of the intestinal microfl ora in humans and laboratory animals. Int Bull Vet Med. 2016; 4:86—94.
  28. Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011; 62(8):1596—605. https://doi.org/10.1016/j.marpolbul.2011.05.030
  29. Lusher A. Microplastics in the marine environment: distribution, interactions and effects. In: Bergmann M, Gutow L, Klages M, editors. Marine anthropogenic litter. Cham: Springer; 2015. p. 245—307. https://doi.org/10.1007/978-3-319-16510-3_10
  30. Proshad R, Kormoker T, Islam MS, Haque MA, Rahman MM, Mithu MMR. Toxic effects of plastic on human health and environment: a consequences of health risk assessment in Bangladesh. Int J Health. 2018; 6(1):1—5. https://doi.org/10.14419/ijh.v6i1.8655
  31. Lu L, Luo T, Zhao Y, Cai C, Fu Z, Jin Y. Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health. Sci Total Environ. 2019; 667:94—100. https://doi.org/10.1016/j.scitotenv.2019.02.380
  32. Baird RW, Hooker SK. Ingestion of plastic and unusual prey by a juvenile harbour porpoise. Mar Pollut Bull. 2000; 40(8):719—20. https://doi.org/10.1016/S0025-326X(00)00051-5
  33. Fry MD, Fefer SI, Sileo L. Ingestion of plastic debris by laysan albatrosses and wedge-tailed shearwaters in the Hawaiian Islands. Mar Pollut Bull. 1987; 18(6):339—43. https://doi.org/10.1016/S0025-326X(87)80022-X
  34. Mascarenhas R, Guimarães dos Santos R, Zeppelini D. Plastic debris ingestion by sea turtle in Paraiba, Brazil. Mar Pollut Bull. 2004; 49(4):354—5. https://doi.org/10.1016/j.marpolbul.2004.05.006
  35. Wright SL, Th ompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: a review. Environ Pollut. 2013; 178:483—92. https://doi.org/10.1016/j.envpol.2013.02.031
  36. Koelmans AA. Modeling the role of microplastics in bioaccumulation of organic chemicals to marine aquatic organisms. Critical review. In: Bergmann M, Gutow L, Klages M, editors. Marine anthropogenic litter. Cham: Springer; 2015. p. 313—28. https://doi.org/10.1007/978-3-319-16510-3_11
  37. Dubaish F, Liebezeit G. Suspended microplastics and black carbon particles in the Jade System, southern Northea. Wat Air Soil Poll. 2013; 224:1—8. https://doi.org/10.1007/s11270-012-1352-9
  38. Cole M, Lindeque P, Halsband-Lenk C, Galloway TS. Microplastic as a contaminant in the marine environment: a review. Mar Pollut Bull. 2011; 62:2588—97. https://doi.org/10.1016/j.marpolbul.2011.09.025
  39. Brygadyrenko VV, Lieshchova MA, Bilan MV, Tishkina nm, Horchanok AV. Effect of alcohol tincture of Aralia elata on the organism of rats and their gut microbiota against the background of excessive fat diet. Regul Mech Biosyst. 2019; 10(4):497—506. https://doi.org/10.15421/021973
  40. Lieshchova MA, Tishkina NM, Bohomaz AA, Gavrilin PM, Brygadyrenko VV. Combined effect of glyphosphate, saccharin and sodium benzoate on rats. Regul Mech Biosyst. 2018; 9(4):591—7. https://doi.org/10.15421/021888
  41. Lieshchova MA, Bilan MV, Bohomaz AA, Tishkina NM, Brygadyrenko VV. Effect of succinic acid on the organism of mice and their intestinal microbiota against the background of excessive fat consumption. Regul Mech Biosyst. 2020; 11(2):153—61. https://doi.org/10.15421/022023
  42. Lieshchova MA, Brygadyrenko VV, Tishkina NM, Gavrilin PM, Bohomaz AA. Impact of polyvinyl chloride, polystyrene, and polyethylene on the organism of mice. Regul Mech Biosyst. 2019; 10(1):50—5. https://doi.org/10.15421/021908
  43. Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab. 2002; 87:5185—90. https://doi.org/10.1210/jc.2002-020209
  44. Jani PU, Florence AT, McCarthy DE. Further histological evidence of gastrointestinal absorption of polystyrene nanospheres in the rat. Int J Pharm. 1992; 84:245—52. https://doi.org/10.1016/0378-5173(92)90162-U
  45. Florence AT, Hussain N. Transcytosis of nanoparticle and dendrimer delivery systems, evolving vistas. Adv Drug Deliv Rev. 2001; 50:S69—S89. https://doi.org/10.1016/S0169-409X(01)00184-3
  46. Setälä O, Fleming-Lehtinen V, Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut. 2012; 185:77—83. https://doi.org/10.1016/j.envpol.2013.10.013
  47. Smith M, Love DC, Rochman CM, Neff RA. Microplastics in seafood and the implications for human health. Curr Environ Health Rep. 2018; 5:375—86. https://doi.org/10.1007/s40572-018-0206-z
  48. van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut. 2014; 193:65—70. https://doi.org/10.1016/j.envpol.2014.06.010
  49. Chen Q, Zhang X, Xie Q, Lee YH, Lee JS, Shi H. Microplastics habituated with biofi lm change decabrominated diphenyl ether degradation products and thyroid endocrine toxicity. Ecotoxicol Environ Saf. 2021; 228:1—10. https://doi.org/10.1016/j.ecoenv.2021.112991
  50. Lusher AL, Mchugh M, Thompson RC. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull. 2013; 67:94—9. https://doi.org/10.1016/j.marpolbul.2012.11.028
  51. Baalkhuyur FM, Dohaish JAB, Elhalwagy MEA, Alikunhi NM, Alsuwailem Røstad A, Coker DJ, Berumen ML, Duarte CM. Microplastic in the gastrointestinal tract of fishes along the Saudi Arabian Red Sea coast. Mar Pollut Bull. 2018; 131:407—15. https://doi.org/10.1016/j.marpolbul.2018.04.040
  52. Bessa F, Barria P, Neto JM, Frias JPGL, Otero V, Sobral P, Marques JC. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar Pollut Bull. 2018; 128:575—84. https://doi.org/10.1016/j.marpolbul.2018.01.044
  53. Tanaka K, Takada H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci Rep. 2016; 6:34351. https://doi.org/10.1038/srep34351
  54. Hwang J, Choi D, Han S, Jung SY, Choi J, Hong J. Potential toxicity of polystyrene microplastic particles. Sci Rep. 2020; 10:7391. https://doi.org/10.1038/s41598-020-64464-9
  55. Fackelmann G, Sommer S. Microplastics and the gut microbiome: how chronically exposed species may suffer from gut PAR. Mar Pollut Bull. 2019; 143:193—203. https://doi.org/10.1016/j.marpolbul.2019.04.030
  56. Jin Y, Xia J, Pan Z, Yang J, Wang W, Fu Z. Polystyrene microplastics induce microbiota PAR and inflammation in the gut of adult zebrafish. Environ Pollut. 2018; 235:322—9. https://doi.org/10.1016/j.envpol.2017.12.088
  57. Huang JN, Wen B, Zhu JG, Zhang YS, Gao JZ, Chen ZZ. Exposure to microplastics impairs digestive performance, stimulates immune response and induces microbiota PAR in the gut of juvenile guppy (Poecilia reticulata). Sci Total Environ. 2020; 733:138929. https://doi.org/10.1016/j.scitotenv.2020.138929
  58. Xie S, Zhou A, Wei T, Li S, Yang B, Xu G, Zou J. Nanoplastics induce more serious microbiota PAR and inflammation in the gut of adult zebrafish than microplastics. Bull Environ Contam Toxicol. 2021; 107(4):640—50. https://doi.org/10.1007/s00128-021-03348-8