Mikrobiol. Z. 2022; 84(3):92-100.
doi: https://doi.org/10.15407/microbiolj84.03.092

Plectosphaerella melonis (Syn. Acremonium cucurbitacearum) — Plant Pathogenic Organism

H.V. Tsekhmister, А.S. Kyslynska

Institute of Agricultural Microbiology and Agroindustrial Manufacture, NAAS of Ukraine
97 Shevchenka Str., Chernihiv, 14027, Ukraine

Fungal diseases cause signifi cant damage to agriculture. Plectosphaerella melonis (syn. Acremonium cucurbitacearum and Nodulisporium melonis) is a pathogen of cultivated plant diseases in Spain, Italy, Japan, USA, Egypt, and Ukraine. This review discusses the main results of research related to this phytopathogen. By morphological and cultural features, P. melonis is a morphologically intermediate species between A. strictum and A. charticola, however, 5.8S-ITS regionbased phylogenetic analysis showed that P. melonis is a monophyletic taxon more closely related to Plectosphaerella than to other species of the genus Acremonium. The most susceptible plants are at the stage of germination; however, the development of the disease is manifested in the fruiting period. For a comprehensive assessment of virulence, real leaf area (RLA) of the first two leaves, lesion of hypocotyl (RH), root collar (RSR), primary (R1R) and secondary roots (R2R) are measured. P. melonis affects the root system, in particular the root collar and hypocotyl, and colonizes the epidermis and cortex of the root centrographically towards the stem. The range of host plants includes Cucurbitaceae, however, peppers, tomatoes, basil, and parsley are infected as well. Plants vary in susceptibility depending on the species and even variety. The pathogenic response of plants differs depending on the growing conditions (protected and open soil), the interaction between the pathogen and competing microorganisms, and other ecological and trophic relationships. The main means of control are the use of long-term crop rotations and the selection of resistant varieties. In Ukraine, a strain of the antagonist fungus Trichoderma viride was selected, which is an effective means for controlling P. melonis 502. The aim of our work was to establish the role of P. melonis in the development of diseases of cultivated plants.

Keywords: Acremonium cucurbitacearum, Plectosphaerella melonis, Nodulisporium melonis, Cucumis.

Full text

  1. Garsia-Jimenez J, Velazquez MT, Jorda C, Alfaro-Garcia A. Acremonium species as the causal agent of muskmelon collapse in Spain. Plant Dis. 1994; 78:416—419. https://doi.org/10.1094/PD-78-0416
  2. Bruton BD, Davis RM, Gordon TR. Occurrence of Acremonium sp. and Monosporascus cannonballus in the major cantaloupe and watermelon growing areas of California. Plant Dis. 1995; 79:754. https://doi.org/10.1094/PD-79-0754B
  3. Gubler WD, Zitter NA, Hopkins DL, Thomas CE. Acremonium hypocotyl rot. Compendium of cucurbit diseases. 1 ed. St. Paul: Amer. Phytopathological Society; 1996.
  4. Alfaro-García A, Armengol J, Bruton BD, Gams W, García-Jiménez J, Martínez-Ferrer G. The taxonomic position of the causal agent of Acremonium collapse. Mycologia. 1996; 88:804—808. https://doi.org/10.1080/00275514.1996.12026718
  5. Cluck T, Bruton C, Biles C. Effect of carbohydrates on chlamydospore production of Acremonium cucurbitacearum. In: Proc. Okla. Acad. Sci. 85th Technical Meeting Oklahoma State University; 1997 November 08; Oklahoma, USA. 1997. p. 136.
  6. Armengol J. Aspectos patológicos, epidemiológicos y culturales de Acremonium cucurbitacearum Alfaro-Garcia, W. Gams et J. Garcia-Jiménez. Ph.D. diss. Universidad Politecnica de Valencia, Valencia, Spain, 1997.
  7. Armengol J, Sanz E, Martínez-Ferrer G, Sales R, Bruton BD, García-Jiménez J. Host range of Acremonium cucurbitacearum, cause of Acremonium collapse of muskmelon. Plant Pathol. 1998; 47:29—35. https://doi.org/10.1046/j.1365-3059.1998.00199.x
  8. Bruton BD. Soilborne diseases in Cucurbitaceae: Pathogen virulence and host resistance. In: Cucurbitaceae ‘98: evaluation and enhancement of Cucurbit germplasm; 1998 November 30 — December 4; Alexandria, VA. ASHS Press. 1998. p. 143—66.
  9. Bruton BD, Garcia-Jimenez J, Armengol J. Analysis of the relationship between temperature and vine declines caused by Acremonium cucurbitacearum and Monosporascus cannonballus. Subtrop. Plant Sci. 1999; 51:23—28.
  10. Bruton BD, Garcia-Jimenez J, Armengol J, Popham TW. Assessment of virulence of Acremonium cucurbitacearum and Monosporascus cannonballus on Cucumis melo. Plant Dis. 2000; 84:907—913. https://doi.org/10.1094/PDIS.2000.84.8.907
  11. Bruton BD, Popham TW, García-Jiménez J, Armengol J, Miller ME. Disease reaction among selected Cucurbitaceae to an Acremonium cucurbitacearum isolate from Texas. Hortscience. 2000; 35(4):677—680. https://doi.org/10.21273/HORTSCI.35.4.677
  12. Aegerter BJ, Gordon TR, Davis RM. Occurrence and pathogenicity of fungi associated with melon root rot and vine decline in California. Plant Dis. 2000; 84(3):224—230. https://doi.org/10.1094/PDIS.2000.84.3.224
  13. Martinez-Culebras PV, Abad-Campos P, Garcia-Jimenez J. Molecular characterization and PCR detection of the melon pathogen Acremonium cucurbitacearum. Eur J Plant Pathol. 2004; 110:801—809. https://doi.org/10.1007/s10658-004-2490-8
  14. Chilosi G, Reda R, Aleandri MP, Camele I, Altieri L, et al. Fungi associated with root rot and collapse of melon in Italy. OEPP/EPPO Bulletin. 2008; 38:147—154. https://doi.org/10.1111/j.1365-2338.2008.01200.x
  15. Gubler WD. Epidemiology and control of Cephalosporium root and hypocotyl rot of melon. Davis: University of California; 1982.
  16. Bruton BD, Miller ME, Garcia-Jimenez J. Comparison of Acremonium sp. from the Lower Rio Grande Valley of Texas with Acremonium sp. from Spain. Phytopathology. 1996; 3:86.
  17. Infantino A, Uccelletti A, Stefano G, Ciuffreda G, Frisullo S. First report of Monosporascus cannonballus on melon in Italy. J Plant Pathol. 2002; 84:139—140.
  18. Kopilov E, Tsekhmister H, Nadkernychna O, Kyslynska A. Identification of Plectosphaerella melonis from cucumber plants in Ukraine. Phytopathologia Mediterranea. 2021; 60(2):259—263. https://doi.org/10.36253/phyto-12612
  19. Mostafa MA, Attia MF, Merghany MM, Salama RM. Association of Plectosphaerella melonis with cantaloupe decline for the fi rst time in Egypt. Plant Archives. 2019; 19(2):2565—2573.
  20. Infantino A, Balmas V, Schianchi N, et al. Diversity of soil-borne fungal species associated to root rot and vine decline of melon in Sardinia (Italy). J Plant Pathol. 2021; 103:421—432. https://doi.org/10.1007/s42161-021-00774-9
  21. Watanabe T, Sato M. Root rot of melon caused by Nodulisporium melonis in Japan. II: Identifi cation. Annals Phytopathological Society of Japan. 1995; 61:330—333. https://doi.org/10.3186/jjphytopath.61.330
  22. Carlucci A, Raimondo ML, Santos J, Phillips AJL. Plectosphaerella species associated with root and collar rots of horticultural crops in southern Italy. Persoonia — Molecular Phylogeny and Evolution of Fungi. 2012; 28(1):34—48. https://doi.org/10.3767/003158512X638251
  23. Vicente MJ, Cifuentes D, Cenis JL, Abad P. RAPD-PCR polymorphism and vegetative compatibility group variation in Spanish isolates of Acremonium cucurbitacearum. Mycol Res. 1999; 103:1173—1178. https://doi.org/10.1017/S0953756299008345
  24. Abad P, Pérez A, Marqués MC, Vicente MJ, Bruton BD, et al. Assessment of vegetative compatibility of Acremonium cucurbitacearum and Plectosphaerella cucumerina isolates from diseased melon plants. OEPP/EPPO Bulletin. 2000; 30: 199—204. https://doi.org/10.1111/j.1365-2338.2000.tb00879.x
  25. Joaquim TR, Rowe RC. Vegetative compatibility and virulence of strains of Verticillium dahliue from soil and potato plants. Phytopathology 1991; 81:552—558. https://doi.org/10.1094/Phyto-81-552
  26. Abad P, Hack T, Vicente MJ, Bruton BD, Garcı´a-Jime´nez J. Vegetative compatibility groups in Acremonium cucurbitacearum. In: Diagnosis and Identification of Plant Pathogens. Proceedings of the 4th Symposium of the European Foundation for Plant Pathology; 1997 September 9—12; Bonn, Germany. Dordrecht, the Netherlands: Kluwer Academic Publishers. 1997. p. 287—9. https://doi.org/10.1007/978-94-009-0043-1_59
  27. Vicente MJ, Abad P, Cenis JL. RFLPs del ADN mitocondrial, RAPDs y VCGs de Acremonium sp.: marcadores genéticos para suidentificación taxonómica. In: La Protección Vegetal en España; 1994; Madrid. Vicente: Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. 1995. p. 401—15.
  28. Abad P, Hack T, Vicente MJ, Bruton BD, Garcia-Jimenez J. Vegetative compatibility groups in Acremonium cucurbitacearum. In: Diagnosis and Identification of Plant Pathogens. Proceedings of the 4th Symposium of the European Foundation for Plant Pathology; 1996 September 9—12; Bonn, Germany. Dordrecht, the Netherlands: Kluwer Academic Publishers. 1997. p. 287—9. https://doi.org/10.1007/978-94-009-0043-1_59
  29. Chilosi G, Reda R, Aleandri MP, Camele I, Marcone C, Altieri L, Montuschi C, Rossi V, Carlucci A, Lops F, Mucci M, Raimondo ML, Frisullo S. Occurrence of fungi associated with melon colapse in Italy. In: 12th Congress of the Mediterranean Phytopathological Union; 2006 June 11—15; Rhodes Island, Greece. p. 133—135.
  30. Iglesias A, Picó B, Nuez F. Pathogenicity of fungi associated with melon vine decline and selection strategies for breeding resistant cultivars. Ann Appl Biol. 2000; 137:141—151. https://doi.org/10.1111/j.1744-7348.2000.tb00046.x
  31. Iglesias A, Pico B, Nuez F. Resistance to melon dieback in C. melo ssp. agrestis Pat 81. Phytopathol. 1999; 89:35.
  32. Garcia-Jimenez J, Velazguez T, Alfaro-Garcia A. Secuencia de sintomas en el colapso del melon. Bol San Veg Plagas. 1989; 15:333—342.
  33. García-Jiménez J, Martínez-Ferrer G, Armengol J, Velázquez MT, Orts M, et al. Agentes asociados al colapso del melon en distintas zonas españolas. Bol San Veg Plagas. 1993; 19:401—423.
  34. Biernaki M, Bruton BD. Quantitative response of Cucumis melo inoculated with root rot pathogens. Plant Dis. 2001; 85:65—70. https://doi.org/10.1094/PDIS.2001.85.1.65
  35. Alfaro-Fernández A, García-Luis A. Colonisation and histological changes in muskmelon and autumn squash tissues infected by Acremonium cucurbitacearum or Monosporascus cannonballus. Eur J Plant Pathol. 2009; 125(1):73—85. https://doi.org/10.1007/s10658-009-9460-0
  36. Pivonia S, Cohen R, Kafkafi U, Ben Ze’ev IS, Katan J. Sudden wilt of melons in Southern Israel: fungal agents and relationship with plant development. Plant Dis. 1997; 81:1264—1268. https://doi.org/10.1094/PDIS.1997.81.11.1264
  37. Carlucci A, Raimondo ML, Santos J, Phillips AJL. Plectosphaerella species associated with root and collar rots of horticultural crops in southern Italy. Persoonia — Molecular Phylogeny and Evolution of Fungi. 2012; 28(1):34—48. https://doi.org/10.3767/003158512X638251
  38. Raimondo ML, Carlucci A. Characterization and pathogenicity of Plectosphaerella spp. collected from basil and parsley in Italy. Phytopathologia Mediterranea. 2018; 57(2):284−295. https://doi.org/10.1111/ppa.12766
  39. Raimondo ML, Carlucci A. Characterization and pathogenicity assessment of Plectosphaerella species associated with stunting disease on tomato and pepper crops in Italy. Plant Pathology. 2018; 67(3):626−641.
  40. Grogan RG, Sall MA, Punja ZK. Concepts for modeling root infection by soilborne fungi. Phytopathology 1980; 70:361—363. https://doi.org/10.1094/Phyto-70-361
  41. Schmidt R, Mitchell J, Scow K. Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities. Soil Biology and Biochemistry. 2019; 129:99−109. https://doi.org/10.1016/j.soilbio.2018.11.010
  42. Tsekhmister HV, Kyslynska AS, Pavlenko AA. Antahonistychna aktyvnist gruntovykh mikroorhanizmiv yak efektyvnyi zasib zakhystu roslyn vid akremoniozu. Silskohospodarska mikrobiolohiia. 2019; 30:46−53. Ukrainian. https://doi.org/10.35868/1997-3004.30.46-53
  43. Tsekhmister H, Khalep Yu, Khareba O. Ekonomichna y enerhetychna efektyvnist peredposivnoi obrobky nasinnia ohirkiv hrybom Trichoderma viride. Visnyk ahrarnoi nauky. 2021; 99(9):72−79. Ukrainian. https://doi.org/10.31073/agrovisnyk202109-10
  44. Pavlenko AA, Kopylov EP, Tsekhmister HV. [Efficacy of Trichoderma viride strain with high antagonistic and cellulolytic activity]. Agricultural microbiology. 2021; 33:88−95. Ukrainian. https://doi.org/10.35868/1997-3004.33.88-95
  45. Kopylov YeP, Tsekhmister HV. Vplyv hryba-antahonista Trichoderma viride 017 na produktyvnist roslyn ohirkiv. Silskohospodarska mikrobiolohiia. 2018; 27:74—79. Ukrainian. https://doi.org/10.35868/1997-3004.27.74-79
  46. Derevianko SV, Vasylchenko AV, Tsekhmister HV. Biolohichna aktyvnist kompozytsii nanochastynok nemetaliv. Ahroekolohichnyi zhurnal. 2020; 1:111−115. Ukrainian.