Mikrobiol. Z. 2022; 84(3):39-50.
doi: https://doi.org/10.15407/microbiolj84.03.039

Antibiofilm Activity of 4-(Adamantyl-1)-1-(1-Aminobutyl) Benzol
against Methicillin-Resistant Staphylococcus aureus

N. Hrynchuk1, L. Zelena2, T. Bukhtiarova1, N. Vrynchanu1,
L. Ishchenko3, E. Vazhnichaya4

1Institute of Pharmacology and Toxicology, NAMS of Ukraine
14 Antona Tsedika Str., Kyiv, 03057, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine

3Ukrainian Laboratory of Quality and Safety of Agricultural Products,
National University of Life and Environmental Sciences of Ukraine

7 Mashynobudivnykiv Str., Chabany, 08162, Ukraine

4Poltava State Medical University
23 Shevchenka Str., Poltava, 36011, Ukraine

Staphylococcus aureus is a widespread opportunistic pathogen, causing community-acquired and nosocomial infections with both acute and chronic recurrent courses. The process of chronicity of the disease is provided by biofilms. Features of the structure and functioning of biofilms, in particular the presence of matrix, quorum sensing systems, persistent cells, and efflux pumps, provide microbial communities with resistance to antimicrobial drugs under their action in therapeutic concentrations. The insufficient eff ectiveness of modern antimicrobial chemotherapy against biofi lm microorganisms indicates the urgency of the problem to search for compounds with antibiofilm activity that can affect various stages of the biofilm formation and the formed biofilm. The aim of the study is to establish the antibiofilm activity of 4-(adamantyl-1)-1-(1-aminobutyl) benzol against methicillin-resistant S. aureus (MRSA) and to determine the mechanism of its action. Methods. The ability of adamantane-containing compound 4-(adamantyl-1)-1-(1-aminobutyl) benzol (AM-166) to prevent biofilm formation and destroy the formed biofilm of S. aureus was investigated on polystyrene plates by the sorption of gentian violet on its structures followed with desorption of the dye into the organic solvent. The viability of S. aureus cells at the first stage of biofilm formation and in the composition of mature biofilms was evaluated using specific dyes for living (acridine orange) and non-viable (propidium iodide) cells. Detection of genes responsible for antibiotic resistance and biofi lm formation was performed by the polymerase chain reaction (PCR) with detection of PCR products in agarose gel. Evaluation of the effect of AM-166 on the expression of genes regulating the biofilm formation (ica, agrA, sarA, and sigB) was investigated by the real-time PCR and semi-quantitative PCR. Results. It was found that the compound AM-166 shows activity against S. aureus biofilm formation. The most pronounced effect was registered at a concentration of 5.0 minimum inhibitory concentration (MIC) (92.3%.) Under the action of AM-166 on the formed 2-day biofilms, their destruction was marked: the biomass decreases by 30.9% at 5.0 MIC. According to the results of fluorescence microscopy, the adamantane derivative at 5.0 MIC helps to reduce the number of viable cells at different stages of formation of the S. aureus biofilm. The results of molecular genetic studies indicate that the ica gene expression is significantly inhibited by the action of subinhibitory concentrations of the compound AM-116. No significant changes in the expression of sarA, agrA, and sigB genes were registered. Conclusions. Experiments on the effect of adamantane derivative on S. aureus biofilms showed that the most pronounced activity of AM-116 was observed at the stage of biofilm formation, as evidenced by the inhibition of transcriptional activity of the ica gene responsible for early stages of the biofilm formation, in particular the adhesion of planktonic cells to the substrate.

Keywords: biofilm, Staphylococcus aureus, MRSA, adamantane derivative, gene expression.

Full text

  1. Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofi lm dispersal. Front Cell Infect Microbiol. 2014; 4:178. https://doi.org/10.3389/fcimb.2014.00178
  2. Loomba P, Taneja J, Mishra B. Methicillin and Vancomycin Resistant S. aureus in Hospitalized Patients. J Glob Infect Dis. 2010; 2(3):275—83. https://doi.org/10.4103/0974-777X.68535
  3. Ito T, Okuma K, Ma XX, Yuzawa H, Hiramatsu K. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist Update. 2003; 6(1):41-52. https://doi.org/10.1016/S1368-7646(03)00003-7
  4. Deurenberg RH, Vink C, Kalenic S, et al. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clinical Microbiology and Infection. 2007; 13(3):222-35. https://doi.org/10.1111/j.1469-0691.2006.01573.x
  5. Paharik AE, Horswill AR. Th e Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. Microbiol Spectr. 2016; 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0022-2015
  6. Beenken KE, Mrak LN, Griffi n LM, et al. Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation. PLoS One. 2010; 5(5):e10790. https://doi.org/10.1371/journal.pone.0010790
  7. Uribe-Garcıa A, Paniagua-Contreras GL, Monroy-Pérez E, et al. Frequency and expression of genes involved in adhesion and biofilm formation in Staphylococcus aureus strains isolated from periodontal lesions. Journal of Microbiology, Immunology and Infection. 2019.
  8. Gotz F. Staphylococcus and biofilms. Mol Microbiol. 2002; 43(6):1367-78. https://doi.org/10.1046/j.1365-2958.2002.02827.x
  9. Cue D, Lei MG, Lee CY. Genetic regulation of the intercellular adhesion locus in staphylococci. Front Cell Infect Microbiol. 2012; 2(38). https://doi.org/10.3389/fcimb.2012.00038
  10. Anderson DJ, Kaye KS, Chen LF, Schmader KE, et al. Clinical and fi nancial outcomes due to methicillin resistant Staphylococcus aureus surgical site infection: a multi-center matched outcomes study. PLoS One. 2009; 4(12):e8305. https://doi.org/10.1371/journal.pone.0008305
  11. Shlaes DM, Bradford PA. Antibiotics-From Th ere to Where?: How the antibiotic miracle is threatened by resistance and a broken market and what we can do about it. Pathog Immun. 2018; 3(1):19-43. https://doi.org/10.20411/pai.v3i1.231
  12. Wanka L, Iqbal K, Schreiner PR. Th e Lipophilic Bullet Hits the Targets: Medicinal Chemistry of Adamantane Derivatives. Chem Rev. 2013; 113(5):3516—604. https://doi.org/10.1021/cr100264t
  13. Dudikova DM, Vrynchanu NO, Nosar VI. Alteration of Pseudomonas aeruginosa respiration by 4-(1-adamantyl)-phenol derivative. Biologija. 2018; 64(3):228-34. https://doi.org/10.6001/biologija.v64i3.3828
  14. Dudikova D. Membranotropic effects of 1-adamantane phenol derivative. 24th European Congress of Clinical Microbiology and Infectious Diseases, Barcelona, 10-13 May 2014. http://www.escmid.org/escmid_library/online_lecture_library/material/?mid=1329215
  15. Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, CLSI, Wayne, PA, USA, Document VET01S. 2020; 5rd edition.
  16. O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011; 47:e2437. https://doi.org/10.3791/2437
  17. Mardanova AM, Kabanov DA, Rudakova NL, Sharipova MR. [BIOPLENKI: Osnovnye principy organizacii i metody issledovaniya]. Kazan: K(P)FU; 2016. Russian.
  18. Kayumov AR, Nureeva AA, Trizna EY, Gazizova GR, Bogachev MI, Shtyrlin NV, et al. New derivatives of pyridoxine exhibit high antibacterial activity against biofilm-embedded Staphylococcus cells. Biomed Res Int. 2015; 2015:890968. https://doi.org/10.1155/2015/890968
  19. Bogachev MI, Volkov VYu, Markelov OA, Trizna EYu, Baydamshina DR, Melnikov V, et. al. Fast and simple tool for the quantifi cation of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS One. 2018; 13(5):e0193267. https://doi.org/10.1371/journal.pone.0193267
  20. Ishchenko LM, Vigovskaya LN, Danchuk VV, et al. [Identification of antibiotic resistance genes of Salmonella spp. by polymerase chain reaction]. Agrarian Bulletin of the Black Sea Littoral. 2019; 93:284-9. Ukrainian.
  21. Jonas D, Speck M, Daschner FD, et al. Rapid PCR-Based Identifi cation of Methicillin-Resistant Staphylococcus aureus from Screening Swabs. Clin Microbiology. 2002; 40(5):1821-3. https://doi.org/10.1128/JCM.40.5.1821-1823.2002
  22. Chen Y, Liu T, Wang K, et al. Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One. 2016; 11(4):e0153468. https://doi.org/10.1371/journal.pone.0153468
  23. Harapanahalli AK, Chen Y, Li J, et al. Influence of Adhesion Force on icaA and cidA Gene Expression and Production of Matrix Components in Staphylococcus aureus Biofilms. Applied and Environm Microbiol. 2015; 81(10):3369-78. https://doi.org/10.1128/AEM.04178-14
  24. Darwish SF, Asfour HAE. Investigation of Biofilm Forming Ability i n Staphylococci Causing Bovine Mastitis Using Phenotypic and Genotypic Assays. The scientific world journal. 2013; 2013:1-9. https://doi.org/10.1155/2013/378492
  25. Li L, et al. Analysis of biofilm formation and associated gene detection in Staphylococcus isolates from bovine mastitis. African Journal of Biotechnology. 2012; 11(8):2113-8. https://doi.org/10.5897/AJB11.081
  26. Zelena L, Gretsky I, Gromozova E. Influence of ultrahigh frequency irradiation on Photobacterium phosphoreum luxb gene expression. Cent Eur J Biol. 2014; 9(10):1004-10. https://doi.org/10.2478/s11535-014-0347-5
  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods. 2001; 25(4):402-28. https://doi.org/10.1006/meth.2001.1262
  28. Khalafian AA, “STATISTICA 6. [Statystycheskyi analyz dannykh: uchebnyk]. 2 ed. Moscow: Bynom; 2010. Russian.
  29. Dudikova D, Voychuk S, Vrynchanu N. [Effects 4-(1-adamantyl)-phenoxy-3-(N-benzyl, N-dimethylamino)-2-propanol chloride on the strains of Pseudomonas spp.]. ScienceRise: Biological Science. 2018; 12(4):35-41. Russian. https://doi.org/10.15587/2519-8025.2018.141396
  30. Varbanets LD, Maksymov YuM, Vrynchanu NO. [Vplyv pokhidnoho aminoadamantanu AM-166 na lipopolisakharyd Escherichia coli]. Journal of the NAMSU. 2009; 15(2):377—85. Ukrainian.
  31. Kaplan JB. Antibiotic-induced biofilm formation. Int J Artif Organs. 2011; 34(9):737—51. https://doi.org/10.5301/ijao.5000027
  32. Schilcher K, Andreoni F, Haunreiter VD, et al. Modulation of Staphylococcus aureus Biofilm Matrix by Subinhibitory Concentrations of Clindamycin. Antimicrob Agents Chemother. 2016; 60(10):5957-67. https://doi.org/10.1128/AAC.00463-16
  33. Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 1999; 67:5427-33. https://doi.org/10.1128/IAI.67.10.5427-5433.1999
  34. Singh R, Ray P. Quorum sensing-mediated regulation of staphylococcal virulence and antibiotic resistance. Future Microbiol. 2014; 9(5):669-81. https://doi.org/10.2217/fmb.14.31
  35. Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. Genetic control of bacterial biofilms. J Appl Genet. 2016; 57(2):225-38. https://doi.org/10.1007/s13353-015-0309-2
  36. Valle J, Toledo Arana A, Berasain C, Ghigo M, et al. SarA and not σB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol. 2003; 48(4):1075-7. https://doi.org/10.1046/j.1365-2958.2003.03493.x
  37. Tuchscherr L, Bischoff M, Lattar SM, et al. Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections. PLoS Pathog. 2015; 11(4):e1004870. https://doi.org/10.1371/journal.ppat.1004870