Mikrobiol. Z. 2022; 84(2):47-56.
doi: https://doi.org/10.15407/microbiolj84.02.047

The Effect of Ag-Doping on the Cytotoxicity of ZnO Nanostructures Grown on Ag/Si Substrates by APMOCVD

K.S. Naumenko1, A.I. Ievtushenko2, V.A. Karpyna2, O.I. Bykov2, L.A. Myroniuk2

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine

2Frantsevich Institute for Problems of Material Science, NAS of Ukraine
3 Krhyzhanovsky Str., Kyiv, 03142, Ukraine

The search and development of new nanostructures and nanomaterials are very important for the progress of nanotechnology and modern microbiology. Due to the unique properties of silver and zinc oxide, these nanoparticles are the optimal basis for creating nanostructures with potential antiviral activity. An important issue in these studies is the establishment of cytotoxicity of these nanoparticles and their composites. Aim. To define the influence of substrate temperature and Ag concentration in ZnO lattice on the microstructure and cytotoxicity of zinc oxide nanostructures. Methods. Pure and Ag-doped ZnO nanostructures were grown on Ag/Si substrates by atmospheric pressure metalorganic chemical vapor deposition method using a mixture of zinc acetylacetonate and silver acetylacetonate powders as a precursor. Argentum thin films were deposited on Si substrates by a thermal evaporation method. MTT-assay was used for the analysis of MDBK and MDCK cell viability in the definition of zinc oxide nanostructure cytotoxicity. Results. Ag-doped zinc oxide nanostructures were grown and characterized by X-ray diff raction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. It was found that Si substrate and pure zinc oxide do not inhibit the cell viability of both epithelial cultures whereas Ag-doped ZnO nanostructures inhibit the cell viability because of all-time exposure in a sample without dilution. The cytotoxic effect was not observed at higher dilutions for Ag-doped zinc oxide nanostructures. Conclusions. The investigation of the effect of Ag-doping on the morphology and cytotoxicity of zinc oxide nanostructures is very important for implementing zinc oxide nanostructures into the current optoelectronics and photocatalysis.

Keywords: ZnO nanostructures, Ag doping, APMOCVD, scanning electron microscopy, cytotoxicity.

Full text

  1. Walker P, Siddell S, Lefk owitz E, Mushegian A, Dempsey D, Dutilh B, et al. Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses. Archives Virol. 2019; 164:2417–2429. https://doi.org/10.1007/s00705-019-04306-w
  2. Hodek J, Zajícová V, Lovětinská-Šlamborová I, Stibor I, Müllerová J, Weber J. Protective hybrid coating containing silver, copper and zinc cations effective against human immunodefi ciency virus and other enveloped viruses. BMC Microbiol. 2016; Suppl 1(56). https://doi.org/10.1186/s12866-016-0675-x
  3. Schio L, Michels F, Fongaro G, Figueroa A. Trends in the antiviral chemical activity of material surfaces associated with the SARS-CoV-2 outbreak. Front Chem. Eng. 2021; 3:636075. https://doi.org/10.3389/fceng.2021.636075
  4. Toledo G, Toledo V,. Lanfredi A, Escote M, Champi A, Carlan da Silva C, et al. Promising Nanostructured Materials against Enveloped Virus. Health Sciences. 2020; 92(4):e20200718. https://doi.org/10.1590/0001-3765202020200718
  5. Yang S, Liu J, Wang J, Yuan Y, Cao A, Wang H, et al. Cytotoxicity of zinc oxide nanoparticles: the importance of microenvironment. J Nanosci Nanotechnol. 2010; 10(12):8638–8645. https://doi.org/10.1166/jnn.2010.2491
  6. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008; 4(1):26–49. https://doi.org/10.1002/smll.200700595
  7. Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, et al. Inhibition of H1N1 infl uenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. J Biomed Sci. 2019; 26(1):70–80. https://doi.org/10.1186/s12929-019-0563-4
  8. Lashkarev G, Shtepliuk I, Ievtushenko A, Khyzhun O, Kartuzov V, Ovsiannikova L, et al. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide. Low temperature physics. 2015; 41(2):129–140. https://doi.org/10.1063/1.4908204
  9. Golovynskyi S, Ievtushenko A, Mamykin S, Dusheiko M, Golovynska I, Bykov O, et al. High transparent and conductive undoped ZnO thin films deposited by reactive ion-beam sputtering. Vacuum. 2018; 153:204–210. https://doi.org/10.1016/j.vacuum.2018.04.019
  10. Khan S, Pathak B. ZnO based Photocatalytic Degradation of Persistent Pesticides: A Comprehensive Review. Environmental Nanotechnology, Monitoring and Management. 2020; 13:100290. https://doi.org/10.1016/j.enmm.2020.100290
  11. Ong C, Ng L, Mohammad A. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews. 2018; 81:536–551. https://doi.org/10.1016/j.rser.2017.08.020
  12. Lee K, Lai C, Ngai K, Juan J. Recent developments of zinc oxide based photocatalyst in water treatment tech nology: A review. Water Research. 2016; 88:428–448. https://doi.org/10.1016/j.watres.2015.09.045
  13. Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh A. Recent progress on doped ZnO nanostructures forvisible-light photocatalysis. Th in Solid Films. 2016; 605:2–19. https://doi.org/10.1016/j.tsf.2015.12.064
  14. Ahamed M, Khan M, Akhtar M, Alhadlaq H, Alshamsaan A. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells. Scientific Reports. 2017; 7:17662. https://doi.org/10.1038/s41598-017-17559-9
  15. Saravanan R, Mansoob Khan M, Gupta V, Mosquera E, Gracia F, Narayanan V, Stephen A. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. Journal of Colloid and Interface Science. 2015; 452:126–133. https://doi.org/10.1016/j.jcis.2015.04.035
  16. Raji R, Sibi K, Gopchandran G. ZnO:Ag nanorods as efficient photocatalysts: Sunlight driven photocatalytic degradation of sulforhodamine B. Applied Surface Science. 2018; 427(B):863–875. https://doi.org/10.1016/j.apsusc.2017.09.050
  17. Zhizhong H, Lili R, Zhihui C, Chongqi C, Haibo P, Jianzhong C. Ag/ZnO fl ower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Applied Catalysis B: Environmental. 2012; 126:298–305. https://doi.org/10.1016/j.apcatb.2012.07.002
  18. Ievtushenko A, Karpyna V, Eriksson J, Tsiaoussis I, Shtepliuk I, Lashkarev G, et al. Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures. Superlattices and Microstructures. 2018; 117:121–131. https://doi.org/10.1016/j.spmi.2018.03.029
  19. Ievtushenko A, Tkach V, Strelchuk V, Petrosian L, Kolomys O, Kutsay O, et al. Solar Explosive Evaporation Growth of ZnO Nanostructures. Applied Science. 2017; 7(4):383–392. https://doi.org/10.3390/app7040383
  20. Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, et al. Inhibition of H1N1 infl uenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. J Biomed Sci. 2019; 10; 26(1):70–80. https://doi.org/10.1186/s12929-019-0563-4
  21. Raza A, Kanwal Z, Rauf A, Sabri N, Riaz S, Naseem S. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes. Nanomaterials. 2016; 6(4):74–89. https://doi.org/10.3390/nano6040074
  22. Akter M, Sikder T, Rahman M, Ullah A, Hossain B, Banik S, Hosokawa T, et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res. 2017; 2(9):1–16. https://doi.org/10.1016/j.jare.2017.10.008
  23. Costa C, Rodrigues E, Tokuhara K, Oliveira C, Lisboa-Filho N, Rocha A. ZnO Nanoparticles with Different Sizes and Morphologies for Medical Implant Coatings: Synthesis and Cytotoxicity. BioNano Sci. 2018; 8(2):587–595. https://doi.org/10.1007/s12668-018-0514-7
  24. Kononenko V, Repair N, Marušič N, Drašler B, Romih T, Hočevar S, Drobne D. Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters. Toxicol In Vitro. 2017; 40:256–263. https://doi.org/10.1016/j.tiv.2017.01.015
  25. Pal S, Tak K, Song M. Does the antibacterial activity of silver nanoparticles depend on the nanoparticle's shape? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007; 73:1712–1720. https://doi.org/10.1128/AEM.02218-06
  26. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011; 16(10):8894–8918. https://doi.org/10.3390/molecules16108894
  27. Zhang T, Wang L, Chen Q, Chen C. Cytotoxic potential of silver nanoparticles. Yonsei medical journal. 2014; 55(2):283–291. https://doi.org/10.3349/ymj.2014.55.2.283