Mikrobiol. Z. 2022; 84(2):33-39.
doi: https://doi.org/10.15407/microbiolj84.02.033

Detection of Biofilm Formation and Some Virulence Factors in Pseudomonas aeruginosa,
and the Effect of Some Antibiotics

J.H. Makhrmash

Wasit University, Iraq
University City/Hay Al-Rabie, Al-Kut, Wasit Province, Irag/P.O. BOX. 97

Objective. Pseudomonas aeruginosa is a present everywhere and opportunistic bacterium pathogen. The existence of numerous virulence factors i.e. exo-toxin, exo-enzyme genes, and biofi lm may be contributed in the pathogenesis and pathogenicity of the bacterium. The goals of the present work were to detect biofilm formation, some biofilm genes, and the effect of antibiotics against P. aeruginosa. Methods. All isolates were identified using API 20E and 16S rRNA techniques. The microtiter plate method (MTPM) was used to detect biofi lm formation. Th e polymerase chain reaction (PCR) was used to fi nd some virulence genes e.g. pelA, pslA. Results. A total of 64 P. aeruginosa isolates were identified as P. aeruginosa. The majority of infection belonged to burn infections — 27 (42.2%), followed by ear — 17 (26.5%), and urine — 20 (31.3%). The results of biofilm detection using MTPM showed that all P. aeruginosa isolates were able to produce biofilm but at different levels. PCR technique was used to detect biofilm genes. Studies showed that 61 (95.30%) and 63 (99.32%) isolates carried pelA and pslA genes, respectively. Moreover, a susceptibility test was used to select 10 antibiotics. P. aeruginosa isolates were resistant to cefotaxime — 61 (95.3%), carbenicillin — 59 (92.2%), ampicillin — 38 (59.4%), piperacilin/tazobactam — 29 (45.3%), streptomycin — 28 (43.8%), moxifloxacin — 27 (42.4%), ticarcilin — 26 (40.6%), ciprofloxacin — 24 (37.5%), gentamicin — 20 (31.3%), and neomycin — 13 (20.3%). Conclusions. Biofilm is produced by P. aeruginosa at different levels. The molecular technique showed that the pelA and pslA genes are associated with the form of biofilm in P. aeruginosa isolates. The susceptibility tests showed that the most active antibiotics against P. aeruginosa were neomycin, gentamycin, and ciprofloxacin, respectively.

Keywords: Pseudomonas aeruginosa, biofilm, virulence factors, antibiotics.

Full text

  1. Moradali MF, Ghods S, Bernd H, Rehm A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol. 2017; 7:39. https://doi.org/10.3389/fcimb.2017.00039
  2. Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am J Respir Cell Mol Biol. 2018; 58(4):428—439. https://doi.org/10.1165/rcmb.2017-0321TR
  3. Hwang W, Yoon SS. Virulence Characteristics and an Action Mode of Antibiotic Resistance in Multidrug-Resistant Pseudomonas aeruginosa. Scientific Reports. 2019; 9(487). https://doi.org/10.1038/s41598-018-37422-9
  4. Schulze A, Mitterer F, Pombo JP. Biofilms by bacterial human pathogens: Clinical relevance-development, composition and regulation — therapeutical strategies. Microbial Cell. 2021; 8(2):28‒56. https://doi.org/10.15698/mic2021.02.741
  5. Motta J-P, Wallace JL, Buret AG, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nature Rev Gastroenterol and Hepatol. 2021; 18: 314‒334. https://doi.org/10.1038/s41575-020-00397-y
  6. Colvin M, et al. The Pel and Psl polysaccharides provide Pseudomonas eruginosa structural redundancy within the biofilm matrix. Environ Microbiol. 2012; 14(8):1913‒28. https://doi.org/10.1111/j.1462-2920.2011.02657.x
  7. Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O'Toole GA, Parsek MR. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Nat Acad Sci USA. 2003; 100:7907‒12. https://doi.org/10.1073/pnas.1231792100
  8. Li Y, Li X, Hao Y, Liu Y, Dong Z. Biological and Physiochemical Methods of Biofilm Adhesion Resistance Control of Medical-Context Surface. Int J Biol Sci. 2021; 17(7):1769‒1781. https://doi.org/10.7150/ijbs.59025
  9. Strateva T, Yordanov D. Pseudomonas aeruginosa ‒ a phenomenon of bacterial resistance. J Med Microbiol. 2009; 58:1133‒1148. https://doi.org/10.1099/jmm.0.009142-0
  10. Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19:419‒426. https://doi.org/10.1016/j.tim.2011.04.005
  11. Chakraborty P, Bajeli S, Kaushal D, Radotra BD, Kumar A. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nature Communicat. 2021; 12:1606. https://doi.org/10.1038/s41467-021-21748-6
  12. Powell LC, Pritchard MF, Ferguson EL, Powell KA, Patel ShU, Rye PhD, et al. Argeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. Npj Biofi lms and Microbiomes 2018:4(13). https://doi.org/10.1038/s41522-018-0056-3
  13. Nasirmoghadas P, Yadegari S, Moghim Sh, Esfahani BN, Fazeli H, Poursina F, et al. Evaluation of Biofilm Formation and Frequency of Multidrug-resistant and Extended Drug-resistant Strain in Pseudomonas aeruginosa Isolated from Burn Patients in Isfahan. Adv Biomed Res. 2018; 7:61. https://doi.org/10.4103/abr.abr_37_17
  14. Prince AA, Steiger JD, Khalid AN, Dogrhamji L, Reger Ch, Claire SE, et al. Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol, 2008; 22(3):239‒45. https://doi.org/10.2500/ajr.2008.22.3180
  15. Oncel S, Pinar E, Sener G, Calli C, Karagoz U. Evaluation of bacterial biofilms in chronic rhinosinusitis. J Otolaryngol Head Neck Surg. 2010; 39:52‒5.
  16. Patankar YR, Lovewell RR, Poynter ME, Jyot J, Kazmierczak BI, Berwin B. Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa. Infect. Immun. 2013; 81:2043—2052. https://doi.org/10.1128/IAI.00054-13
  17. Al-Sheikhly MH, Musleh LN, Al-Mathkhury HJF. Gene Expression of pelA and pslA in Pseudomonas aeruginosa under Gentamicin Stress. Iraqi J Sci. 2020; 2:295‒305. https://doi.org/10.24996/ijs.2020.61.2.6
  18. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell LP, Wozniak DJ, Parsek MR. The Pel and Psl polysaccharides provide structural redundancy within the biofilm matrix. Environ Microbiol. 2012; 14:1913‒1928. https://doi.org/10.1111/j.1462-2920.2011.02657.x
  19. Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol. 2011; 2:167. https://doi.org/10.3389/fmicb.2011.00167
  20. Hisham A, Fathy M, Eman M. Combating Pseudomonas aeruginosa biofilms by potential biofilm inhibitors. J Asian J Res Pharm Sci. 2012; 2:66‒72.
  21. Abd El Galil K, Abdel Ghani S, Sebak M, El-Naggar W. Detection of biofilm genes among clinical isolates of Pseudomonas aeruginosa recovered from some Egyptian hospitals. J Microbiol. 2013; 36:86‒10.
  22. Kang CI, Wi YM, Lee MY, Ko KS, Chung DR, Peck KR, et al. Epidemiology and risk factors of community onset infections caused by extended-spectrum β-lactamase-producing Escherichia coli strains. J Clin Microbiol. 2012; 50:312‒7. https://doi.org/10.1128/JCM.06002-11
  23. Toukam M, Lyonga EE, Assoumou MC, Fokunang CN, Atashili J, Kechia AF, et al. Quinolone and fluoroquinolone resistance in Enterobacteriaceae isolated from hospitalized and community patients in Cameroon. J Med Sci. 2010; 1:490‒4.
  24. Al-Zaidi JR. Antibiotic susceptibility patterns of Pseudomonas aeruginosa isolated from clinical and hospital environmental samples in Nasiriyah Iraq. Afr J Microbiol Res. 2016; 10:844‒9. https://doi.org/10.5897/AJMR2016.8042
  25. Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Research Notes. 2020; 13(27). https://doi.org/10.1186/s13104-020-4890-z