Mikrobiol. Z. 2022; 84(2):24-32.
doi: https://doi.org/10.15407/microbiolj84.02.024

Fatty Acid Composition of Comamonas testosteroni under Hexachlorobenzene Loading Conditions

M.I. Dimova, G.O. Iutynska

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine

Changes in the lipid composition in bacterial membranes are considered to be the most important adaptation mechanisms to adverse chemical factors. The aim of the study was to compare the hexachlorobenzene effects on the fatty acid composition of total lipids Comamonas testosteroni. Methods. The study was performed with C. testosteroni UCM B-400 and B-401, B-213 strains. Bacteria were grown in the Luria-Bertrani (LB) liquid medium containing 10 and 20 mg/L of hexachlorobenzene (HCB). After cultivation, the biomass was separated by centrifugation and the fatty acid composition of total lipids was determined through analyzing its methyl esters. To assess the cell membrane properties, such parameters as the lipid unsaturation index, the average carbon chain length of fatty acids, and the membrane viscosity index were determined. Results. In the fatty acids spectrum of C. testosteroni B-400 after cultivation in a medium containing 20 mg/L of HCB, the contents of unsaturated hexadecenoic (C16:1) and octadecenoic (C18:1) acids were lower by 10.6 and 5.5%, respectively, and that of saturated hexadecanoic (C16:0) acid was higher by 8.4%, compared to the control. The fatty acid composition of C. testosteroni B-401 was more stable compared to strain B-400. Collection strain C. testosteroni B-213 compared to strains isolated from soil with high HCB load, in the presence of 10 and 20 mg/L of HCB had the highest relative content of saturated hexadecanoic acid (C16:0) up to 38.33—40.7%. Unsaturated octadecenoic acid decreased at the doses 10 and 20 mg/L to 1.5—2% compared to the control. In all strains under the HCB impact, there was an increase in the relative content of C17-cyclopropanoic acid compared to control variants. Conclusions. C. testosteroni UCM B-400, B-401, and B-213 bacteria under cultivation conditions in HCB-containing medium, decreasing the degree of lipid unsaturation and increasing the relative content of C17-cyclopropanoic acid can be considered as the main mechanisms regulating the cytoplasmic membrane fluidity; the displaying of these protective reactions had a strain trait and did not depend on the adaptation in natural isolating places.

Keywords: Comamonas testosteroni, fatty acid composition, lipid unsaturation, membrane fluidity, hexachlorobenzene.

Full text

  1. Raffa CM, Chiampo F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering. 2021; 8(7):92. https://doi.org/10.3390/bioengineering8070092
  2. Mohapatra B, Phale PS. Microbial Degradation of Naphthalene and Substituted Naphthalenes: Metabolic Diversity and Genomic Insight for Bioremediation. Front Bioeng Biotechnol. 2021; 9:602445. https://doi.org/10.3389/fbioe.2021.602445
  3. Montanari C, Kamdem SLS, Serrazanetti DI, Etoa F-X, Guerzoni ME. Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses. Food Microbiol. 2010; 27:493—502. https://doi.org/10.1016/j.fm.2009.12.003
  4. Segura A, Molina L, Fillet S, Krell T, Bernal P, Muñoz-Rojas J, Ramos J-L. Solvent to lerance in Gram-negative bacteria. Curr Opin Biotechnol. 2012; 23(3):415—421. https://doi.org/10.1016/j.copbio.2011.11.015
  5. Nowak A, Greń I, Mrozik A. Changes in fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols. World J Microbiol Biotechnol. 2016; (32):198. https://doi.org/10.1007/s11274-016-2160-y
  6. Smułek W, Cybulski Z, Guzik U, Jesionowski T, Kaczorek E. Three chlorotoluene-degrading bacterial strains: Differences in biodegradation potential and cell surface properties. Chemosphere. 2019; (237):124452. https://doi.org/10.1016/j.chemosphere.2019.124452
  7. Abdulina D, Iutynska G, Purish L. Fatty acid composition of sulfate-reducing bacteria isolated from technogenic ecotopes. Ukr Biochem J. 2020; 92(4):104—111. https://doi.org/10.15407/ubj92.04.103
  8. Murinova S. Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int J Microbiol. 2014:1—16. https://doi.org/10.1155/2014/873081
  9. Ortega Á, Segura A, Ramos L, Krell T, Matilla MA. Membrane Composition and Modifications in Response to Aromatic Hydrocarbons in Gram-Negative Bacteria. In: Krell T., editor. Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions. Handbook of Hydrocarbon and Lipid Microbiology. Springer: Cham; 2018. https://doi.org/10.1007/978-3-319-50542-8_48
  10. Hartig C, Loffh agen N, Harms H. Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. Appl Environ Microbiol. 2005; 71(4):1915—1922. https://doi.org/10.1128/AEM.71.4.1915-1922.2005
  11. Eberlein C, Baumgarten T, Starke S. Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Appl Microbiol Biotechnol. 2018; 102:2583—2593. https://doi.org/10.1007/s00253-018-8832-9
  12. Baumgarten T, Vazquez J, Bastisch C, Veron W, Feuilloley MG, Nietzsche S, Wick LY, Heipieper HJ. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl Microbiol Biotechnol. 2012; 93:837—845. https://doi.org/10.1007/s00253-011-3442-9
  13. Yap L, Lee Y, Poh C. Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Appl Microbiol Biotechnol. 1999; 51:833—840. https://doi.org/10.1007/s002530051470
  14. Dimova M, Dankevych L, Yamborko N, Iutynska G. Polyphasic taxonomy analyse of Comamonas testosteroni resistant to hexachlorobenzene. J Microbiol Biotechnol Food Sci. 2022; 11(5). https://doi.org/10.55251/jmbfs.4711
  15. Arai H, Akahira S, Ohishi T, Maeda M, Kudo T. Adaptation of Cornamonas testosteroni TAM1 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiol. 1998; 144(10):2895—2903. https://doi.org/10.1099/00221287-144-10-2895
  16. Varbanets LD, Zdorovenko GM, Knirel YuA. [Methods of endotoxins investigation]. Kyiv: Naukova Dumka; 2006. Russian.
  17. Guerzoni M. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology. 2001; 147:2255—2264. https://doi.org/10.1099/00221287-147-8-2255
  18. Baysse C., O'Gara F. Role of membrane structure during stress signaling and adaptation in Pseudomonas. 2007; 7:193—224. https://doi.org/10.1007/978-1-4020-6097-7_7
  19. Mrozik A, Piotrowska-Seget Z, Łabuzek S. Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas. Microbiol Res. 2004; 159(1):87—95. https://doi.org/10.1016/j.micres.2004.02.001
  20. Bernal P, Segura A, Ramos J. Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E. Environ Microbiol. 2007; 9(7):1658—1664. https://doi.org/10.1111/j.1462-2920.2007.01283.x
  21. De Carvalho CCCR. Adaptation of Rhodococcus to Organic Solvents. Microbiology Monographs. 2019; 103—135. https://doi.org/10.1007/978-3-030-11461-9_5
  22. Heipieper H, Meinhardt F, Segura A. Th e cis—trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett. 2003; 229:1—7. https://doi.org/10.1016/S0378-1097(03)00792-4
  23. Poger D, Mark A. A ring to rule the mall: the effect of cyclopropane fatty acids on the fluidity of lipid bilayers. J Phys Chem B. 2015; 119 (17):5487—5495. https://doi.org/10.1021/acs.jpcb.5b00958
  24. Ramos J, Cuenca M, Molina-Santiago C. Mechanisms of solvent resistance mediated by the interplay of cellular factors in Pseudomonas putida. FEMS Microbiol. 2015; 39(4):555—566. https://doi.org/10.1093/femsre/fuv006
  25. Nowak A, Żur-Pińska J, Piński A, Pacek G, Mrozik A. Adaptation of phenol-degrading Pseudomonas putida KB3 to suboptimal growth condition: A focus on degradative rate, membrane properties and expression of xylE and cfaB genes. Ecotoxicol Environ Saf. 2021; 221:112431. https://doi.org/10.1016/j.ecoenv.2021.112431
  26. Pini CV, Bernal P, Godoy P, Ramos JL, Segura A. Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in Pseudomonas putida DOT-T1E. Microb Biotechnol. 2009; 2(2):253—61. https://doi.org/10.1111/j.1751-7915.2009.00084.x