Mikrobiol. Z. 2022; 84(2):12-23.
doi: https://doi.org/10.15407/microbiolj84.02.012

Properties of Microorganisms Isolated from Soils under Conventional and Organic Farming

I.I. Gumeniuk, A.S. Levishko, O.S. Demyanyuk, O.V. Sherstoboeva

Institute of Agroecology and Environmental Management, NAAS of Ukraine
12 Metrolohichna Str., Kyiv, 03143, Ukraine

Оbjective. The article presents the results of research aimed at determining the influence of different methods of tillage on the functional diversity of the soil microbiota. Soil samples containing plant residues from agricultural plots under conventional and organic farming in the Kyiv oblast were used for the study. Methods. Analysis of soil microbiota using differential diagnostic nutrient media by serial dilutions of soil suspension was performed. To quantify the phosphate-mobilizing properties of the isolated microorganisms, the concentration of phosphorus in the solution was measured (grown in NBRIP liquid medium) and detected by the Arenius spectrophotometric method on a Ulab 102UV Spectrophotometer. Results. Th e soil of the plots under organic agrotechnology of cultivation was marked by a greater number of microorganisms of all ecological and trophic groups, except oligonitrophilic and phosphate-solubilizing bacteria. The vast majority of phosphate-transforming bacteria were isolated from the soil of agricultural plots under convection farming. The largest number of cellulose-degrading isolates was isolated from the soil under organic farming plots. Five isolates have the widest range of agronomically useful properties, in particular, the ability to mobilize organic and inorganic phosphates and cellulosolytic activity: 6b, 13b, 18b, 19b, and 8m. After incubation of the isolates on an NBRIP medium at 28°C and 200 rpm for 72 hr, special analyzes for dissolved phosphorus content and pH level in the culture fluid were performed. Isolate 8m selected from chornozem (black soil) under convection agriculture and classified by us as Trichoderma sp. exhibited the highest phosphate-mobilizing activity. The vast majority of bacteria capable of phosphate transformation were isolated from the soil of agricultural areas affected by convection agriculture; and isolates capable of dissolving cellulose — from the soil of organic farming. Conclusions. The initial identification of certain isolates allowed us to classify them as Bacillus and Trichoderma. These isolates are important for further research with the prospect of creating a complex biological preparation with fungicidal properties and the ability to mobilize organic and inorganic phosphorus compounds.

Keywords: phosphate-solubilizing microorganisms, agronomically valuable microorganisms, cellulolytic microorganisms, chornozem (black soil).

Full text

  1. Kurdysh IK. Rol mikroorhanizmiv u vidtvorenni rodiuchosti gruntiv. Silskohospodarska mikrobiolohiia. 2009; 9:7—32. Ukrainian.
  2. Zvjagincev DG. Pochva i mikroorganizmy. Moskva: MGU; 1987. Russian.
  3. Patyka VP, Symochko LIu. [Soil microbiological monitoring of natural and transformed ecosystems in the trans-Carpathian region of Ukraine]. Mikrobiol Z. 2013; 75(2):21—31. Ukrainian.
  4. Bobryk NIu, Kryvtsova MV, Nikolaichuk VI, Voloshchuk IS. Reaktsiia mikrobioty gruntu na diiu vazhkykh metaliv u zoni vplyvu zaliznychnoho transportu. Visnyk Dnipropetrovskoho universytetu. Biolohiia, ekolohiia. 2016; 24(1):151—156. Ukrainian. https://doi.org/10.15421/011618
  5. Meena RS, et al. Impact of agrochemicals on soil microbiota and management: Review. Land. 2020; 9(34):1—21. https://doi.org/10.3390/land9020034
  6. Chi-Chu Loa. Effect of pesticides on soil microbial community. Journal of Environmental Science and Health. 2010; 45:348—359. https://doi.org/10.1080/03601231003799804
  7. Hussain S, Siddique T, Saleem M, Arshad M, Khalid A. Impact of pesticides on soil microbial diversity: enzymes and biochemical reactions. Advances in Agronomy. 2009; 102:159—200. https://doi.org/10.1016/S0065-2113(09)01005-0
  8. DSTU ISO 10381-1:2004 Yakist gruntu. Vidbyrannia prob. Chastyny 1—5. Kyiv: Derzhspozhyvstandart Ukrainy; 2006. Ukrainian.
  9. DSTU ISO 4287:2004 Yakist gruntu. Vidbyrannia prob. Kyiv: Derzhspozhyvstandart Ukrainy; 2004. Ukrainian.
  10. Volkogon VV, Nadkernichna OV, Tokmakova LM, ta in. Eksperymental’na gruntova mikrobiologiya: monografiya. Kyiv: Agrarna Nauka; 2010. Ukrainian.
  11. Antypchuk AF, Piliashenko-Novokhatnyi AI, Yevdokymenko TM. Praktykum z mikrobiolohii. Vidkrytyi mizhnar. un-t rozv. liudyny «Ukraina». Kyiv: Un-t «Ukraina»; 2011. Ukrainian.
  12. Humaira Y, Asghari B. Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soil of weeds of khewra salt range and attock. Pakistan Journal of Botany. 2011; 3:1663—1668.
  13. Khrystenko AO. Rozrobka standartu Ukrainy na metody vyznachennia rukhomykh spoluk fosforu y kaliiu u hruntakh. Visnyk ahrarnoi nauky. 2003; 6:9—13. Ukrainian.
  14. Zhang J, Wang P, Fang L, Zhang Q-A, Yan C, Chen J. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion. Polish Journal of Microbiology. 2017; 66(1):57—65. https://doi.org/10.5604/17331331.1234994
  15. Brenner Don J, Krieg Noel R, Staley James T. The Proteobacteria. Bergey's Manual of Systematic Bacteriology 2nd Ed. New York: Springer, 2005. https://doi.org/10.1007/0-387-29298-5
  16. Nassal D, Spohn M, Eltlbany N, et al. Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant and Soil. 2018; 427:17—37. https://doi.org/10.1007/s11104-017-3528-y
  17. Zavarzin GA, Kolotilova NN. Vvedenie v prirodovedcheskuju mikrobiologiju. Knizhnyj dom Universitet. 2001 . Russian.
  18. Tsyuk OA, Kyrylyuk VI, Yushchenko LP. Biochemical Activity of Typical Chernozem in Different Farming Systems. Mikrobiol Z. 2017; 79(3):65—71. https://doi.org/10.15407/microbiolj79.03.065
  19. Patyka NV, Tonkha OL, Patyka TI, Kiroyants MO, Veretyuk SV. Estimation of Prokaryotic Complex Methagenom of Chernozem Under Agricultural Use. Mikrobiol Z. 2018; 80(6):109—122. https://doi.org/10.15407/microbiolj80.06.109
  20. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soil Springer Plus. 2013; 2(587):1—14. https://doi.org/10.1186/2193-1801-2-587
  21. Bünemann EK, Oberson A, Frossard E. Solubilization of phosphorus by soil microorganisms. Phosphorus in action. Berlin: Springer; 2011. https://doi.org/10.1007/978-3-642-15271-9
  22. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Frontiers in plant science. 2017; 8(16):1—19. https://doi.org/10.3389/fpls.2017.01617
  23. Chaverri P, Samuels G. Trichoderma/Hypocrea (Ascomycota. Hypocreales. Hypocreaceae): species with green ascospores. Studies in Mycology. 2003; 48:100—116.
  24. Tikhanovsky N. Change of microbiological properties of disturbed permafrost soils during their restoration under the influence of fertilizers. Ukrainian Journal of Ecology. 2020; 10(5): 36—43. https://doi.org/10.15421/2020_203
  25. Kremer RJ, Means NE. Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. Eur J Agron. 2009; 31, 153—161. https://doi.org/10.1016/j.eja.2009.06.004
  26. Moretto JAS, Altarugio LM, Andrade PA, Fachin AL, Andreote FD, Stehling EG. Changes in bacterial community aft er application of three diff erent herbicides. FEMS Microbiology Letters. 2017; 364(13):1—6. https://doi.org/10.1093/femsle/fnx113
  27. Abbasi S, Spor A, Sadeghi A, Safaie N. Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Scientific Reports. 2021; 11(1):11—16. https://doi.org/10.1038/s41598-021-88495-y
  28. Roman DL, Voiculescu DI, Filip M, Ostafe V, Isvoran A. Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil. A Review Agriculture 2021; 11:893—911. https://doi.org/10.3390/agriculture11090893