Mikrobiol. Z. 2021; 83(6):95-109.
doi: https://doi.org/10.15407/microbiolj83.06.095

Inhibitors of Corrosion Induced by Sulfate-Reducing Bacteria

L.M. Purish, D.R. Abdulina, G.O. Iutynska

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine

Currently, a lot of researcher’s attention is devoted to the problem of microbiologically influenced corrosion (MIC), since it causes huge damages to the economy, initiating the destruction of oil and gas pipelines and other underground constructions. To protect industrial materials from MIC effects an organic chemical inhibitors are massively used. However, the problem of their use is associated with toxicity, dangerous for the environment that caused the need for development the alternative methods of MIC repression. At the review, the data about different types of inhibitors-biocides usage has provided. The chemical inhibitors features are given and the mechanisms of their protective action are considered. The screening results and use of alternative and eco-friendly methods for managing the effect of corrosion caused by sulfate-reducing bacteria (SRB) are highlighted. Methods of joint application of chemical inhibitors and enhancers, such as chelators, biosurfactants, which contribute to reducing the concentration of chemical inhibitors, are discussed. The possibility of disruption of the quorum sensing interaction in the bacterial community to prevent the biofilm formation is considered. The information about the use of natural plant extracts, food waste, as well as by-products of agro-industrial production to combat MIC is provided. The development of biological corrosion control methods (to combat MIC) is of great importance for creating the best alternative and eco-friendly approaches to managing the effect of corrosion caused by SRB. The analysis of the literature data indicates the need to find the best alternatives and environmentally friendly solutions.

Keywords: microbial corrosion inhibitors, sulfate-reducing bacteria, biofilm, “green biocides”.

Full text (PDF, in English)

  1. Li X, Liu ZY, Zhang D, Du C. Materials science: share corrosion data. Nature. 2015; 527:441-442. https://doi.org/10.1038/527441a
  2. Larsen KR. A closer look at microbiologically influenced corrosion. Materials performance roundtable Q & A. NACE International. 2014; 53:32-40.
  3. Little BJ, Lee JS. Microbiologically influenced corrosion. Kirk-Othmer Encyclopedia of Chemical Technology. Wiley: New York; 2009. https://doi.org/10.1002/0471238961.micrlitt.a01
  4. Koch GH, Brongers MPH, Thompson NG, Virmani YP, Payer JH. Corrosion cost and preventive strategies in the United States, NACE International. 2002.
  5. Kip N, van Veen JA. The dual role of microbes in corrosion. ISME J. 2015; 9(3):542-551. https://doi.org/10.1038/ismej.2014.169
  6. Bhola SM, Alabbas FM, Bhola R, et al., Neem extract as an inhibitor for biocorrosion influenced by sulfate reducing bacteria: A preliminary investigation. Engineering Failure Analysis. 2014; 36:92-103. https://doi.org/10.1016/j.engfailanal.2013.09.015
  7. Costerton IW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annual Rev Microbiol. 1995; 49:711-745. https://doi.org/10.1146/annurev.mi.49.100195.003431
  8. Lewandowski Z. Structure and function of bacterial biofilms. Biofilms: Recent advances in their study and control. Evans LV, editor. Haywood Acad. Pub; 2000.
  9. Hamilton WA. Sulphate-reducing bacteria and anaerobic corrosion. Annual Rev Microbiol. 1985; 39:195-217. https://doi.org/10.1146/annurev.mi.39.100185.001211
  10. Lee W, Lewandowski Z, Nielsen PH, Hamilton WA. Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling. 1995; 8:165-194. https://doi.org/10.1080/08927019509378271
  11. Minz D, Flax JL, Green SJ, Muyzer G, Cohen Y, Wagner M, Rittmann BE, Stahl DA. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol. 1999; 65:4666-4671. https://doi.org/10.1128/AEM.65.10.4666-4671.1999
  12. Muyzer G, Stams AJM. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008; 6:441-454. https://doi.org/10.1038/nrmicro1892
  13. Shi Y, Zwokinski MD, Schreiber ME, Bahr JM, Sewell GW, Hickey WJ. Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments. Appl Environ Microbiol 1999; 65:2143-2150. https://doi.org/10.1128/AEM.65.5.2143-2150.1999
  14. So CM, Young LY. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol. 1999; 65:2969-2976. https://doi.org/10.1128/AEM.65.7.2969-2976.1999
  15. Davidova IA, Duncan KE, Choi OK, Suflita JM. Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane degrading sulfate reducing bacterium. Int J Syst Evol Microbiol. 2006; 56:2737-2742. https://doi.org/10.1099/ijs.0.64398-0
  16. Iverson WP. Mechanism of anaerobic corrosion of steel by sulfate-reducing bacteria. Mater Perform. 1984; 23(3):28-30.
  17. Xua C, Zhanga Y, Chenga G, Zhu W. Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria. Materials Characterization. 2008; 59:245-255. https://doi.org/10.1016/j.matchar.2007.01.001
  18. Pogrebova IS, Kozlova IA, Purish LM, Gerasika SE, Tuovinen OH. Mechanism of inhibition of corrosion of steel in the presence of sulfatereducing bacteria. Materials Science. 2001; 37(5):754-761. https://doi.org/10.1023/A:1015044425411
  19. Beech IB, Sunner JA, Hiraoka K. Microbe-surface interac- tions in biofouling and biocorrosion processes. Int Microbiol. 2005; 8:157-168.
  20. Nemati M, Jenneman GE, Voordouw G. Impact of nitrate mediated microbial control of souring in oil reservoirs on the extent of corrosion. Biotechnol Prog. 2001; 17:852-859. https://doi.org/10.1021/bp010084v
  21. Mechichi T, Fardeau ML, Labat M, Garcia JL, Verhé F, Patel BKC. Clostridium peptidivorans sp. nov., a peptide-fermenting bacterium from an olive mill wastewater treatment digester. Int J Syst Evol Microbiol. 2000; 50:1259-1264. https://doi.org/10.1099/00207713-50-3-1259
  22. Hernández-Eugenio G, Fardeau ML, Cayol JL, Patel BKC, Thomas P, Macarie H, Garcia J-L, Ollivier B. Clostridium thiosulfatireducens sp. nov., a proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol. 2002; 52:1461-1468. https://doi.org/10.1099/00207713-52-5-1461
  23. Sallam A, Steinbüchel A. Clostridium sulfidigenes sp. nov., a mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from pond sediment. Int J Syst Evol Microbiol. 2009; 59:1661-1665. https://doi.org/10.1099/ijs.0.004986-0
  24. Davey ME, O'Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000; 64(4):847-867. https://doi.org/10.1128/MMBR.64.4.847-867.2000
  25. Watnick P, Kolter R. Biofilm, city of microbes. J Bacteriol. 2000; 182(10):2675-2679. https://doi.org/10.1128/JB.182.10.2675-2679.2000
  26. Sutherland IW. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology. 2001; 147:3-9. https://doi.org/10.1099/00221287-147-1-3
  27. Lewandowski Z, Dickinson W, Lee W. Electrochemical interactions of biofilms with metal surfaces. Wat Sci Tech. 1997; 36(1):295-302. https://doi.org/10.2166/wst.1997.0067
  28. Beech I, Zinkevich V, Tapper R, Gubner R, Avci R. Study of interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionization mass spectrometry. J Microbiol Methods. 1999; 36(1-2):3-10. https://doi.org/10.1016/S0167-7012(99)00005-6
  29. Hamilton WA. Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling. 2003; 19(1):65-76. https://doi.org/10.1080/0892701021000041078
  30. Lewis K. Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy. 2001; 45(4):999-1007. https://doi.org/10.1128/AAC.45.4.999-1007.2001
  31. Campanac C, Pineau L, Payard A, et al. Interactions between biocide cationic agents and bacteria biofilms. Antimicrobial Agents and Chemo Therapy. 2002; 46(5):1469-1474. https://doi.org/10.1128/AAC.46.5.1469-1474.2002
  32. McDouglad D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 2012; 10:39-50. https://doi.org/10.1038/nrmicro2695
  33. Agaev NM. [Zakonomernosti sozdaniya biocidov, predotvrashchayushchih razvitie sulfatreduciruyshchih bakteriy i obrozovanie biogennogo serovodoroda]. Phiziko-chimicha mechanica materialiv. Materials Science (Special issue). 2000; 2(3):572-576. Russian.
  34. Golyak YuV, Beloglazov SM. Inhibitor and bactericidal actions of substituted phenols upon corrosion of aluminum under the action of sulfate-reducing bacteria. Praktika protivokorrosionnoy zaschity. 2001; 1(19):11-16.
  35. Diehl KH. Future aspects of biocide use. Polim Paint Colour J. 1992; 182(4311):402404-405411.
  36. Kelland MA. Production chemicals for the oil and gas industry. CRC Press: Boca Raton; 2009.
  37. Kurmakova I, Bondar O, Polevichenko S, Demchenko N. Quaternary pyridinium salts as inhibitors of mild steel biocorrosion. Chemistry & Chemical Technology. 2017; 11(3):314-318. https://doi.org/10.23939/chcht11.03.314
  38. Kermani MB, Morshed A. Carbon dioxide corrosion in oil and gas production- a compendium. Corrosion. 2003; 59(8):659-683. https://doi.org/10.5006/1.3277596
  39. Boivin J. Oil biocides. Mater Perform. 1995; 34:65-683.
  40. Cheung CWS, Beech IB. The use of biocides to control sulfate-reducing bacteria in biofilms on mild steel surfaces. Biofouling. 1996; 9:231-240. https://doi.org/10.1080/08927019609378305
  41. Maillard UY. Bacterial target sites for biocide action. J Appl Microbiol Symp Suppl. 2002; 92:16S-27S. https://doi.org/10.1046/j.1365-2672.92.5s1.3.x
  42. Purish LM, Kozlova IA, Pogrebova IS. [Protect effectiveness of steel corrosion inhibitors in the presence of sulfate-reducing bacteria]. Praktika protivokorrosionnoy zaschity. 2013; 67(1):18-24. Russian.
  43. Pogrebova IS, Purish LM, Kozlova IA, Tuovinen OH. [Elektrokhimicheskye aspekty inhibirovaniya processa mikrobnoy korrosii slaty v prisutstvii sulfatreduciryuschih bacteriy]. Voprosy Khimii i Khimicheskoi Tekhnologii. 1999; 1:268-270. Russian.
  44. Vigdorovich VI, Strelnikova KO, Nazina TN. [Bactericidal characteristics of amdor ic-7 and amdor ic-10 inhibitors of hydrogen sulfide and carbon dioxide corrosion of steel]. Kondensirovannye sredy i mezhfaznye granitsy. Condensed Matter and Interphases. 2012; 14(3):306-309. Russian.
  45. Grab LA, Treis. AB. Comparartive biocidal efficacy vs sulfate-reducing bacteria. In Corrosion/92. NACE International: Houston, TX; 1992.
  46. Gardner LR, Stewart PS. Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. Journal of Industrial Microbiology and Biotechnology. 2002; 29(6):354-360. https://doi.org/10.1038/sj.jim.7000284
  47. Duncan KE, Perez-Ibarra BM, Jenneman G, Busch Harris J, Webb R, Sublette K. The effect of corrosion inhibitors on microbial communities associated with corrosion in a model flow cell system. Appl Microbiol Biotechnol. 2013; 98(2):10.1007/s00253-013-4906-x. https://doi.org/10.1007/s00253-013-4906-x
  48. Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G. Control of biogenic H2S production with nitrite and molybdate. Journal of Industrial Microbiology & Biotechnology. 2001; 26(6):350-355. https://doi.org/10.1038/sj.jim.7000142
  49. Predicala B, Nemati M, Stade S, Lague C. Control of H2S emission from swine manure using Na-nitrite and Na-molybdate. Journal of Hazardous Materials. 2008; 154(1-3):300-309. https://doi.org/10.1016/j.jhazmat.2007.10.026
  50. Tanaka S, Lee YH. Control of sulfate reduction by molybdate in anaerobic digestion. Water Science and Technology. 1997; 36:143-150. https://doi.org/10.2166/wst.1997.0441
  51. Jiang G, Gutierrez O, Raj Sharma K, Yuan Z. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. Water research. 2010; 44:4241-4251. https://doi.org/10.1016/j.watres.2010.05.030
  52. Mohanakrishnan J, Gutierrez O, Meyer RL, Yuan Z. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor. Water Research. 2008; 42(14):3961-3971. https://doi.org/10.1016/j.watres.2008.07.001
  53. Zhang L, Mendoza L, Marzorati M, Verstraete W. Inhibition of sulfide generation by dosing formaldehyde and its derivatives in sewage under anaerobic conditions. Water Sci Technol. 2008; 57(6):915-9. https://doi.org/10.2166/wst.2008.087
  54. Greene EA, Brunelle V, Jenneman GE, Voordouw G. Synergistic inhibition of microbial sulfide production by combinations of the metabolic inhibitor nitrite and biocides. Appl Environ Microbiol. 2006; 72:7897-7901. https://doi.org/10.1128/AEM.01526-06
  55. Coates JD, Chisholm JL, Knapp RM, Mcinerney MJ, Menzie DE, Bhupathiraju VK. Microbially enhanced oil recovery field pilot, Payne County, Oklahoma. Microbial enhancement of oil recovery - recent advances. Premuzic ET, Woodhead A, editors. New York: Elsevier; 1992. p. 197-205. https://doi.org/10.1016/S0376-7361(09)70062-7
  56. Hubert C, Nemati M, Jenneman G, Voordouw G. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Prog. 2003; 19:338-345. https://doi.org/10.1021/bp020128f
  57. Arensdorf JJ, Miner K, Ertmoed R, Clay WK, Stadnicki P, Voordouw G. Mitigation of reservoir souring by nitrate in a produced-water reinjection system in Alberta. Proceedings of the SPE International Symposium on Oilfield Chemistry, The Woodlands, TX: Society of Petroleum Engineers. 2009. https://doi.org/10.2118/121731-MS
  58. Gieg L, Jack T, Foght J. Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol. 2011; 92:263-282. https://doi.org/10.1007/s00253-011-3542-6
  59. Hubert C, Voordouw G. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol. 2007; 73:2644-2652. https://doi.org/10.1128/AEM.02332-06
  60. Gevertz D, Telang AJ, Voordouw G, Jenneman GE. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol. 2000; 66:2491-2501. https://doi.org/10.1128/AEM.66.6.2491-2501.2000
  61. Engelbrektson A, Hubbard C, Tom L, Boussina A, Jin YT, Wong H, et al. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Front Microbiol. 2014; 5:315. https://doi.org/10.3389/fmicb.2014.00315
  62. Gregoire P, Engelbrektson A, Hubbard CG, Metlagel Z, Csencsits R, Auer M, et al. Control of sulfidogenesis through bio-oxidation of H2S coupled to (per)chlorate reduction. Environ Microbiol Rep. 2014; 6:558-564. https://doi.org/10.1111/1758-2229.12156
  63. Carlson HK, Kuehl JV, Hazra AB, Justice NB, Stoeva MK, Sczesnak A, et al. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. ISME J. 2015; 9:1295-1305. https://doi.org/10.1038/ismej.2014.216
  64. Youngblut MD, Wang O, Barnum TP, Coates JD. (Per)chlorate in biology on earth and beyond. Annual Rev Microbiol. 2016; 70:435-457. https://doi.org/10.1146/annurev-micro-102215-095406
  65. Engelbrektson A, Briseno V, Liu Y, Figueroa I, Yee M, Shao GL, Carlson H, Coates JD. Mitigating sulfidogenesis with simultaneous perchlorate and nitrate treatments. Frontiers in Microbiology. 2018; 9:2305. https://doi.org/10.3389/fmicb.2018.02305
  66. Mehta-Kolte MG, Loutey D, Wang O, Youngblut MD, Hubbard CG, Wetmore KM, et al. Mechanism of H2S oxidation by the dissimilatory perchlorate-reducing microorganism Azospira suillum PS. mBio, 2017; 8:e02023-16. https://doi.org/10.1128/mBio.02023-16
  67. Varaa M. Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992; 56:395-411. https://doi.org/10.1128/mr.56.3.395-411.1992
  68. Raad I, Sherertz R. Chelators in combination with biocides: treatment of microbially induced biofilm and corrosion. US Patent 6267979. 2001.
  69. Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, Dvorak T, Cook G, Costerton W. In vitro and ex vivo activities of minocycline and EDTA against microorganisms embed- ded in biofilm on catheter surfaces. Antimicrob Agents. 2003; 47(11):3580-3585. https://doi.org/10.1128/AAC.47.11.3580-3585.2003
  70. Wen J, Zhao K, Gu T, Raad I. Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World J Microbiol Biotechnol. 2010; 26(6):1053-1057. https://doi.org/10.1007/s11274-009-0269-y
  71. Wen J, Zhao K, Gu T, Raad I. A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde. International Biodeterioration & Biodegradation. 2009; 63(8):1102-1106. https://doi.org/10.1016/j.ibiod.2009.09.007
  72. Wen J, Xu D, Gu T, Raad I. A green triple biocide cocktail consisting of a biocide, EDDS and methanol for the mitigation of planktonic and sessile sulfate-reducing bacteria. World J Microbiol Biotechnol. 2012; 28:431-435. https://doi.org/10.1007/s11274-011-0832-1
  73. Li Y, Jia R, Al-Mahamedh HH, Xu D, Gu T. Enhanced biocide mitigation of field biofilm consortia by a mixture of D-amino acids. Front Microbiol. 2016; 7:896-909. https://doi.org/10.3389/fmicb.2016.00896
  74. Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science. 2009; 325(5947):1552-1555. https://doi.org/10.1126/science.1178123
  75. Leiman SA, May JM, Lebar MD, Kahne D, Kolter R, Losick R. D-Amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J Bacteriol. 2013; 195(23):5391-5395. https://doi.org/10.1128/JB.00975-13
  76. Xu D, Jia R, Li Y, Gu T. Advances in the treatment of problematic industrial biofilms. World J Microbiol Biotechnol. 2017; 33:97. https://doi.org/10.1007/s11274-016-2203-4
  77. Goldman G, Starosvetsky J, Armon R. Inhibition of biofilm formation on UF membrane by use of specific bacteriophages. J Membr Sci. 2009; 342(1-2):145-152. https://doi.org/10.1016/j.memsci.2009.06.036
  78. Eydal HS, Jägevall S, Hermansson M, Pedersen K. Bacteiophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. ISME J. 2009; 3(10):1139-1147. https://doi.org/10.1038/ismej.2009.66
  79. Summer EJ, Liu M, Summer NS, Gill JJ, Janes C, Young R. Phage of sulfate reducing bacteria isolated from high saline envionment. Corrosion/2011 Paper No. 11222, NACE International, Houston. 2011.
  80. Vijayakumar S, Saravanan V. Biosurfactants - Types, sources and applications. Res J Microbiol. 2015; 10:181-192. https://doi.org/10.3923/jm.2015.181.192
  81. Santos DK, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Biosurfactants: Multifunctional biomolecules of the 21st Century. Int J Mol Sci. 2016; 17:401. https://doi.org/10.3390/ijms17030401
  82. Płaza G, Achal V. Biosurfactants: Eco-Friendly and innovative biocides against biocorrosion. Molecular Sciences. Int J Mol Sci. 2020; 21(6):2152. https://doi.org/10.3390/ijms21062152
  83. Zuo R, Ornek D, Syrett BC, Green RM, Hsu CH, Mansfeld FB, Wood TK. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water. Appl Microbiol Biotechnol. 2004; 64(2):275-283. https://doi.org/10.1007/s00253-003-1403-7
  84. Purwasena IA, Astuti DI, Fauziyyah NA, Putri DAS, Sugai Y. Inhibition of microbial influenced corrosion on carbon steel ST37 using biosurfactant produced by Bacillus sp. Mater Res Express. 2019; 6(11):115405. https://doi.org/10.1088/2053-1591/ab4948
  85. Parthipan P, Sabarinathan D, Angaiah S, Rajasekar A. Glycolipid biosurfactant as an ecofriendlly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains. J Mol Lipids. 2018; 261:473-479. https://doi.org/10.1016/j.molliq.2018.04.045
  86. Dagbert C, Meylheuc T, Bellon-Fontaine MN. Corrosion behavior of AISI 304 stainless steel in presence of biosurfactant produced by Pseudomonas fluorescens. Electrochem Acta. 2006; 51:5221-5227. https://doi.org/10.1016/j.electacta.2006.03.063
  87. Astuti DI, Purwasena IA, Putri FZ. Potential of biosufactant as an alternative biocide to control biofilm associated biocorrosion. J Environ Sci Technol. 2018; 11:104-111. https://doi.org/10.3923/jest.2018.104.111
  88. Parsek MR, Greenberg E. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 2005; 13(1):27-33. https://doi.org/10.1016/j.tim.2004.11.007
  89. Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016; 14(9):576. https://doi.org/10.1038/nrmicro.2016.89
  90. Fetzner S. Quorum quenching enzymes. J Biotechnol. 2015; 201:2-14. https://doi.org/10.1016/j.jbiotec.2014.09.001
  91. Kawaguchi T, Chen YP, Norman RS, Decho AW. Rapid screening of quorum-sensing signal N-acyl homoserine lactones by an in vitro cell-free assay. Appl Environ Microbiol. 2008; 74:3667-3671. https://doi.org/10.1128/AEM.02869-07
  92. Decho AW, Visscher PT, Ferry J, Kawaguchi T, He LJ, Przekop KM, Norman RS, Reid RP. Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine lactones (ahls) and abundance changes that may relate to diel pH. Environ Microbiol. 2009; 11:409-420. https://doi.org/10.1111/j.1462-2920.2008.01780.x
  93. Lee S, Park SK, Kwon H, Lee SH, Lee K, Nah CH, et al. Crossing the border between laboratory and field: Bacterial quorum quenching for anti-biofouling strategy in an MBR. Environ Sci Technol. 2016; 50:1788-1795. https://doi.org/10.1021/acs.est.5b04795
  94. Guendouze A, Plener L, Bzdrenga J, Jacquet P, Remy B, Elias M, et al. Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors. Front Microbiol. 2017; 8:227. https://doi.org/10.3389/fmicb.2017.00227
  95. Bergonzi C, Schwab M, Naik T, Daude D, Chabriere E, Elias M. Structural and biochemical characterization of AaL, a quorum quenching lactonase with unusual kinetic properties. Sci Rep. 2018; 8(1):11262. https://doi.org/10.1038/s41598-018-28988-5
  96. Lade H, Paul D, Kweon JH. N-acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control. Biomed Res Int. 2014; 2014:162584. https://doi.org/10.1155/2014/162584
  97. Huang S, Bergonzi C, Schwab M, Elias M, Hicks RE. Evaluation of biological and enzymatic quorum quencher coating additives to reduce biocorrosion of steel. PLOS ONE. 2019; 16(6):e0253354. https://doi.org/10.1371/journal.pone.0253354
  98. Marzorati S, Verotta L, Trasatti SP. Green corrosion inhibitors from natural sources and biomass wastes received. Molecules. 2019; 24(1):48. https://doi.org/10.3390/molecules24010048
  99. Zain WSM, Salleh NIH, Abdullah A. Natural biocides for mitigation of sulphate reducing bacteria. Int J Corros. 2018; 3567569:1-7. https://doi.org/10.1155/2018/3567569
  100. Lavania M, Sarma PM, Mandal AK, Cheema S, Lai B. Efficacy of natural biocide on control of microbial induced corrosion in oil pipelines mediated by Desulfovibrio vulgaris and Desulfovibrio gigas. Journal of Environmental Sciences. 2011; 23(8):1394-1402. https://doi.org/10.1016/S1001-0742(10)60549-9
  101. Karonen M, Hämäläinen M, Nieminen R, et al. Phenolic extractives from the bark of Pinus sylvestris L. and their effects on inflammatory mediators nitric oxide and prostaglandin E. Journal of Agricultural and Food Chemistry. 2004; 52(25):7532-7540. https://doi.org/10.1021/jf048948q
  102. Chelossi E, Faimali M, Comparative assessment of antimicrobial efficacy of new potential biocides for treatment of cooling and ballast waters. Science of the Total Environment. 2006; 356(1-3):1-10. https://doi.org/10.1016/j.scitotenv.2005.03.018
  103. Farjana A, Zerin N, Kabir MS. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria. Asian Pacific Journal of Tropical Disease. 2014; 4(2):S920-S923. https://doi.org/10.1016/S2222-1808(14)60758-1
  104. Grassino AN, Halambek J, Djakovic ́ S, Rimac Brncˇic ́ S, Dent M, Grabaric ́Z. Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocoll. 2016; 52:265-274. https://doi.org/10.1016/j.foodhyd.2015.06.020
  105. Fiori-Bimbi MV, Alvarez PE, Vaca H, Gervasi CA. Corrosion inhibition of mild steel in HCL solution by pectin. Corros Sci. 2015; 92:192-199. https://doi.org/10.1016/j.corsci.2014.12.002
  106. Odewunmi NA, Umoren SA, Gasem ZM. Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution. J Environ Chem Eng. 2015; 3:286-296. https://doi.org/10.1016/j.jece.2014.10.014
  107. Ismail M, Abdulrahman AS, Hussain MS. Solid waste as environmental benign corrosion inhibitors in acidic medium. Int J Eng Sci. 2011; 3:1742-1748.
  108. Rexin Thusnavis G, Vinod Kumar KP. Green corrosion inhibitor for steel in acid medium. Application No. 6278/CHE/2014 A. 2014.
  109. Ponciano Gomes JA, Cardoso Rocha J, D'Elia E. Use of fruit skin extracts as corrosion inhibitors and process for their producing. US Patent US8926867B2. 2015.