Mikrobiol. Z. 2021; 83(5):67-75.
doi: https://doi.org/10.15407/microbiolj83.05.067

Nanoceria Can Inhibit the Reproduction of Transmissible Gastroenteritis Virus: Consideration
for Use to Prevent and Treat Coronavirus Disease

S. Rybalko1, O. Demchenko2, D. Starosyla1, O. Deriabin1, L. Rudenko1,
О. Shcherbakov2, L. Babenko2, R. Bubnov2, M. Spivak2

1Gromashevsky Institute of Epidemiology and Infectious Diseases, NAMS of Ukraine
5 M. Amosova Str., Kyiv, 03038, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine

Nanoceria (cerium dioxide nanoparticles, CeO2) has a broad range of biological properties including antiviral activity. The hypothesis was that nanoceria can efficacy against coronavirus (coronavirus of porcine transmissible gastroenteritis) and potentially can target SARS-CoV-2. Transmissible gastroenteritis coronavirus (TGEV) is the etiologic agent of porcine transmissible gastroenteritis (PTG), a highly contagious pig intestinal disease. The aim of the study was to determine the antiviral activity of CeO2 nanoparticles on the model of porcine coronavirus – TGEV. Methods. We used a highly pathogenic virus strain D52-5 (BRE79), of TGEV. We evaluated antiviral activity of CeO2 nanoparticles on the experimental model of porcine coronavirus (transmissible gastroenteritis virus) in transplantable line of porcine embryonic kidney cells (PEK) culture. Results. The criterion for evaluating the inhibitory activity of antiviral drugs in different in vitro systems is the selectivity index (SI) and the reduction of infectious titer by 1.5–2.0 lgTCD50. Nanoceria effectively inhibited the reproduction of porcine coronavirus with SI index of 83.3.

Keywords: coronavirus, antiviral activity, nanoparticles, nanoceria, transmissible gastroenteritis virus, transplantable line of porcine embryonic kidney cells.

Full text (PDF, in English)

  1. Zholobak NM, Sherbakov OB, Babenko LP, et al. The perspectives of biomedical application of the nanoceria. EPMA Journal. 2014; 5:A136. https://doi.org/10.1186/1878-5085-5-S1-A136
  2. Zholobak N, Sherbakov A, Ivanov V, Olevinskaya Z, Spivak N. Antiviral effectivity of ceria colloid solutions. Twenty-Fourth International Conference on Antiviral Research. Sofia, Bulgaria. 2011; 90(2):A67. https://doi.org/10.1016/j.antiviral.2011.03.137
  3. Zholobak NM, Mironenko AP, Shcherbakov AB, Shydlovska OA, Spivak MY, Radchenko LV, et al. Cerium dioxide nanoparticles increase immunogenicity of the influenza vaccine. Antiviral Res. 2016; 127:1–9. https://doi.org/10.1016/j.antiviral.2015.12.013
  4. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009; 5(24):2848–56. https://doi.org/10.1002/smll.200901048
  5. Zholobak NM, Ivanov VK, Shcherbakov AB, Shaporev AS, Polezhaeva OS, Baranchikov AYe, Spivak NYa, Tretyakov YuD: UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J Photochem Photobiol. B. 2011; 102:32–38. https://doi.org/10.1016/j.jphotobiol.2010.09.002
  6. Bubnov R, Babenko L, Lazarenko L, Kryvtsova M, Shcherbakov O, Zholobak N, Golubnitschaja O, Spivak M. Can tailored nanoceria act as a prebiotic? Report on improved lipid profile and gut microbiota in obese mice. EPMA Journal. 2019; 10:317–335. https://doi.org/10.1007/s13167-019-00190-1
  7. Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses. 2020; 12:254. https://doi.org/10.3390/v12030254
  8. Thakur N, Manna P, Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnology. 2019; 17(1):84. https://doi.org/10.1186/s12951-019-0516-9
  9. Laude H, Chapsal JM, Gelfi J, Labiau S, Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J Gen Virol. 1986; 67(1):119–130. https://doi.org/10.1099/0022-1317-67-1-119
  10. Kobyliak NM, Falalyeyeva TM, Kuryk OG, et al. Antioxidative effects of cerium dioxide nanoparticles ameliorate age-related male infertility: optimistic results in rats and the review of clinical clues for integrative concept of men health and fertility. EPMA J. 2015; 6(1):12. https://doi.org/10.1186/s13167-015-0034-2
  11. Arévalo AP, Pagotto R, et al. Ivermectin reduces in vivo coronavirus infection in a mouse experimental model. Sci Rep. 2021; 11(1):7132. https://doi.org/10.1038/s41598-021-86679-0
  12. Bauchner H, Fontanarosa PB. Randomized Clinical Trials and COVID-19: Managing Expectations. JAMA. 2020; 323(22):2262–2263. https://doi.org/10.1001/jama.2020.8115
  13. Bubnov R, Spivak M. Towards individualized use of probiotics and prebiotics for metabolic syndrome and associated diseases treatment: does pathophysiology-based approach work and can anticipated evidence be completed? Preprints 2018; 2018090185. https://doi.org/10.20944/preprints201809.0185.v1
  14. Bubnov R, Spivak M. Individualized Short-term Probiotic Therapy of Metabolic Syndrome According to the Host’s Phenotype. Journal of Clinical Gastroenterology. 2020; 54:25–26.
  15. Jesenak M, Brndiarova M, Urbancikova I, et al. Immune Parameters and COVID-19 Infection – Associations with Clinical Severity and Disease Prognosis. Front Cell Infect Microbiol. 2020; 10:364. https://doi.org/10.3389/fcimb.2020.00364
  16. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation. EPMA position paper 2016. EPMA J. 2016; 7:23. https://doi.org/10.1186/s13167-016-0072-4
  17. Wang LY, Cui JJ, OuYang QY, et al. Complex analysis of the personalized pharmacotherapy in the management of COVID-19 patients and suggestions for applications of predictive, preventive, and personalized medicine attitude. EPMA J. 2021; 1–18. https://doi.org/10.1007/s13167-021-00247-0