Mikrobiol. Z. 2021; 83(4):74-85.
doi: https://doi.org/10.15407/microbiolj83.04.074

The New Biologically Active Metabolites from Aspergillus niveus 2411

Ya.I. Savchuk, K.S. Tsyhanenko, O.V. Andrienko, I.M. Kurchenko

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Pharmacological science possesses a significant number of compounds with antibiotic activity. By now the chemical structures have been identified and their properties have been described for the great number; many of them found practical use. But the main stimulus for the further new antibiotic compounds search is the acquired resistance of pathogenic organisms. Our previous investigations were devoted to antibiotic activity of Aspergillus niveus that is known as a producer of ferment preparations with wide activity spectrum. Aim. This investigation became the follow-up of our previous studies and its main task was to isolate, purify and obtain biologically active metabolite(s) from A. niveus 2411 strain in crystalline form, and to study its (their) physicochemical properties and biological activity. Methods. Biologically active metabolites were obtained by extraction, two-step column chromatography and recrystallization methods. The obtained substances were characterized by physical-chemical and microbiological methods. Results. Two substances in crystalline form with different spectrum of antibiotic activity against indicator test-cultures were obtained. The substance AN4 showed antibacterial, antifungal, and phytotoxic activities, while AN7 showed only antibacterial activity. Neither of obtained compounds showed dermatocidal or toxigenic activity in rabbit skin test. Obtained spectral characteristics of substances suggest that AN4 and AN7 substances are similar and belong to compounds with cyclic structures, have double linkage, methyl, aromatic, and carboxyl groups. Conclusions. Obtained data showed that antibiotic activity of A. niveus 2411 depend on the complex of biologically active metabolites with different biological and physicochemical properties. Two compounds AN4 and AN7 were isolated and purified from the fungal cultural filtrate of A. niveus 2411. The data of IR and UV spectra of these compounds and their profiles of biological activity don’t have significant differences with those of citrinin – a metabolite of A. niveus with antibiotic properties. However, based on the results obtained and comparisons with the data of other authors on metabolites of A. niveus, we suggest that the substances we isolated may be derivatives of citrinin.

Keywords: Aspergillus niveus, antibiotic activity, metabolites, citrinin derivatives.

Full text (PDF, in English)

  1. Martens E, Demain AL. The antibiotic resistance crisis, with a focus on the United States. J Antibiot. 2017; 70:520–6. https://doi.org/10.1038/ja.2017.30
  2. Arias CA, Murray BE. A New antibiotic and the evolution of resistance. N Engl J Med. 2015; 372(12):1168–70. https://doi.org/10.1056/NEJMcibr1500292
  3. Hughes D, Andersson DI. Evolutionary trajectories to antibiotic resistance. Ann Rev Microbiol. 2017; 71:579–96. https://doi.org/10.1146/annurev-micro-090816-093813
  4. Bilai VI, Kurbatskaia ZA. [Identifier for toxin-forming micromycetes]. Kyiv: Nauk. dumka; 1990. Russian.
  5. Tsyganenko KS, Zaichenko OM. [Antibiotic properties of some species of genus Aspergillus Mich.]. Mikrobiol Z. 2004; 66(4):56–61. Ukrainian.
  6. Savchuk YaI, Zaichenko OM. [Evaluation of potential of micromycetes concerning synthesis of biologically active substances]. Mikrobiol Z. 2010; 72(2):15–21. Ukrainian.
  7. Tsyganenko KS, Savchuk YaI, Nakonechna LT, Kurchenko IM. The biological activity of Alternaria species. Mikrobiol Z. 2018; 80(4):78–87. https://doi.org/10.15407/microbiolj80.04.078
  8. Blochwitz A. Die Gattung Aspergillus. neue Spezies. Diagnosen. Synonyme. Annales Mycologici. 1929; 27(3–4):205–40.
  9. Samson RA, Peterson SW, Frisvad JC, Varga J. New species in Aspergillus section Terrei. Stud Mycol. 2011; 69:39–55. https://doi.org/10.3114/sim.2011.69.04
  10. Silva TM, Alarcon RF, Damasio ARL, Michelin M, Maller A, Masui DC, Terenzi HF, Jorge JA, Polizeli MLTM. Use of cassava peel as carbon source for production of amylolytic enzymes by Aspergillus niveus. Int J Food Eng. 2009; 5(5):1. https://doi.org/10.2202/1556-3758.1629
  11. Silva TM, Maller A, Peixoto-Nogueira SC, Michelin M, Jorge JA, Polizeli MLTM. Evidence of high production levels of thermostable dextrinizing and saccharogenic amylases by Aspergillus niveus. Afr J Biotechnol. 2013; 12(15):1874–81. https://doi.org/10.5897/AJB12.2830
  12. Silva TM, Michelin M, Damasio ARL, Maller A, Almeida FBDR, Ruller R, Ward RJ, Rosa JC, Jorge JA, Terenzi HF, Polizeli MLTM. Purification and biochemical characterization of a novel α-glucosidase from Aspergillus niveus. Antonie van Leeuwenhoek. 2009; 96:569–78. https://doi.org/10.1007/s10482-009-9372-1
  13. Maller A, Damasio ARL, Silva TM, Jorge JA, Terenzi HF, Polizeli MLTM. Biotechnological potential of agro-industrial wastes as a carbon source to thermostable polygalacturonase production in Aspergillus niveus. Enzyme Res. 2011; e289206. https://doi.org/10.4061/2011/289206
  14. Guimaraes LHS, Somera AF, Terenzi HF, Polizeli MLTM, Jorge JA. Production of β-fructofuranosidases by Aspergillus niveus using agroindustrial residues as carbon sources: Characterization of an intracellular enzyme accumulated in the presence of glucose. Process Biochem. 2009; 44:237–41. https://doi.org/10.1016/j.procbio.2008.10.011
  15. Fernandes MLP, Jorge JA, Guimaraes LHS. Characterization of an extracellular β‐D‐fructofuranosidase produced by Aspergillus niveus during solid‐state fermentation (SSF) of cassava husk. J Food Biochem. 2017; e12443. https://doi.org/10.1111/jfbc.12443
  16. Alves TB, Ornela PHO, Oliveira ACO, Jorge JA, Guimaraes LHS. Production and characterization of a thermostable antifungal chitinase secreted by the filamentous fungus Aspergillus niveus under submerged fermentation. 3 Biotech. 2018; 8:369. https://doi.org/10.1007/s13205-018-1397-6
  17. Betini JHA, Michelin M, Peixoto-Nogueira SC, Jorge JA, Terenzi HF, Polizeli MLTM. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst Eng. 2009; 32:819–24. https://doi.org/10.1007/s00449-009-0308-y
  18. Damasio ARL, Silva TM, Almeida FBR, Squina FM, Ribeiro DA, Leme AFP, Segato F, Prade RA, Jorge JA, Terenzi HF, Polizeli MLTM. Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochem. 2011; 46:1236–42. https://doi.org/10.1016/j.procbio.2011.01.027
  19. Sudan R, Bajaj BK. Production and biochemical characterization of xylanase from an alkalitolerant novel species Aspergillus niveus RS2. World J Microbiol Biotechnol. 2007; 23:491–500. https://doi.org/10.1007/s11274-006-9251-0
  20. Amatto IVS, Guimaraes LHS. Production of L-asparaginase by Aspergillus niveus under solid-state fermentation using agroindustrial byproducts. Int J Sci Rep. 2019; 5(9):232–39. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20193761
  21. Maller A, Silva TM, Damásio ARL, Reis VRA, Jorge JA, Polizeli MLTM. Production of Pectin Lyase by Aspergillus niveus under Submerged and Solid State Fermentations Using Agro-Industrial Residues as Carbon Sources. Int Res J Microbiol. 2012; 3(1):29–35.
  22. El-Sayed AS, Khalaf SA, Abdel-Hamid G, El-Batrik MI. Screening, morphological and molecular characterization of fungi producing cystathionine γ-Lyase. Acta Biol Hung. 2015; 66(1):119–32. https://doi.org/10.1556/ABiol.66.2015.1.10
  23. Peixoto-Nogueira SC, Betini JHA, Michelin M, Carvalho CC, Lucca AL, Vici AC, Jorge JA, Polizeli MLTM. Laccase production by Aspergillus niveus on SSF using wheat bran as alternative carbon source and its synergistic effect on pulp biobleaching using a mix of laccase/xylanase from the same microorganism. J Biochem Tech. 2015; 6(2):929–37.
  24. Gnanasekaran R, Dhandapani B, Gopinath KP, Iyyappan J. Synthesis of itaconic acid from agricultural waste using novel Aspergillus niveus. Prep Biochem Biotechnol. 2018; 48(7):605–9. https://doi.org/10.1080/10826068.2018.1476884
  25. Gnanasekaran R, Dhandapani B, Iyyappan J. Improved itaconic acid production by Aspergillus niveus using blended algal biomass hydrolysate and glycerol as substrates. Bioresource Technol. 2019; 283:297–302. https://doi.org/10.1016/j.biortech.2019.03.107
  26. Gnanasekaran R, Saranya P, Yuvashree S, Yuvaraj D, Saravanan A, Smila KH, Anli Dino A. Itaconic acid production by novel Aspergillus niveus in solid state fermentation using agrowastes. Int J Eng Technol. 2018; 7:76–81. https://doi.org/10.14419/ijet.v7i3.34.18777
  27. Angayarkanni J, Palaniswamy M, Swaminathan K. Biotreatment of distillery effluent using Aspergillus niveus. Bull Environ Contam Toxicol. 2003; 70:268–77. https://doi.org/10.1007/s00128-002-0187-2
  28. Chaudhary P, Chhokar V, Choudhary P, Kumar A, Beniwal V. Optimization of chromium and tannic acid bioremediation by Aspergillus niveus using Plackett–Burman design and response surface methodology. AMB Expr. 2017; 7:201. https://doi.org/10.1186/s13568-017-0504-0
  29. Karaca H, Tay T, Kıvan M. Kinetics of lead ion biosorption from aqueous solution onto lyophilized Aspergillus niveus. Water Pract Technol. 2010; 5(1):wpt2010020. https://doi.org/10.2166/wpt.2010.020
  30. Auberger J, Lass-Flörl C, Clausen J, Bellmann R, Buzina W, Gastl G, Nachbaur D. First case of breakthrough pulmonary Aspergillus niveus infection in a patient after allogeneic hematopoietic stem cell transplantation. Diagn Microbiol Infect Dis. 2008; 62:336–39. https://doi.org/10.1016/j.diagmicrobio.2008.06.012
  31. Savchuk YaI, Tsyganenko KS, Zaichenko OM. [Antibiotic activity of some fungi]. Mikrobiol Z. 2013; 75(5):52–61. Ukrainian.
  32. Khalid MM, Sudhir Ch. A modified medium for antibiotic production by Aspergillus spp. antagonistic to citrus cancer pathogen. Nat Acad Sci Lett. 1989; 12(4):103–6.
  33. Bilai VI, editor. [Methods of experimental mycology]. Kyiv: Nauk. dumka; 1982. Russian.
  34. Zaichenko AM, Sobolev VS, Kirillova LM, Rubezhniak IG. [Toxigenic potential of Dendrodochium and Myrothecium Species]. Mikrobiol Z. 1994; 56(1):59–60. Russian.
  35. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2):71–9. https://doi.org/10.1016/j.jpha.2015.11.005
  36. Lurie AA. [Materials for chromatography]. Moscow: Chemistry; 1978. Russian.
  37. Marston A. Thin-layer chromatography with biological detection in phytochemistry. J Chromatogr A. 2011; 1218(19):2676–83. https://doi.org/10.1016/j.chroma.2010.12.068
  38. Dewanjee S, Gangopadhyay M, Bhattabharya N, Khanra R, Dua TK. Bioautography and its scope in the field of natural product chemistry. J Pharm Anal. 2015; 5(2):75–84. https://doi.org/10.1016/j.jpha.2014.06.002
  39. Cheronis ND. [Micro and semimicro methods of organic chemistry]. Terentiev AP, editor. Moscow: Foreign Literature Publishing House; 1960. Russian.
  40. Voskresenskiy PI. [Laboratory technique]. Moscow-Leningrad: Chemistry; 1964. Russian.
  41. Alimarin IP, Busev AI, Vinogradov AP, Ermakov AN, et al. [Analytical chemistry of phosphorus]. Moscow: Science, 1974. Russian.
  42. Majewski WA, Pfanstiel JF, Plusquellic DF, Pratt DW. High resolution optical spectroscopy in the UV. Laser techniques in chemistry. 1995; 23:101–48.
  43. Mannapova RT. Microbiology and mycology. Especially dangerous infectious diseases, mycoses, and mycotoxicosis. Moscow: Prospect; 2018.
  44. Lazurevskiy GV, Terentieva IV, Shamshurin AA. [Practicum on the natural compounds chemistry]. Moscow: Higher School; 1966. Russian.
  45. Filho JWGO, Islam MT, Ali ES, Uddin SJ, Santos JVO, Alencar MVOB, Gomes Júnior AL, Paz MFCJ, Brito MDRM, Sousa JMCE, Shaw S, Medeiros MGF, Dantas SMMM, Rolim HML, Ferreira PMP, Kamal MA, Pieczynska MD, Das N, Gupta VK, Mocan A, Andrade TJADO, Singh BN, Mishra SK, Atanasov AG, Melo-Cavalcante AAC. A comprehensive review on biological properties of citrinin. Food Chem Toxicol. 2017; 110:130–41. https://doi.org/10.1016/j.fct.2017.10.002
  46. Xu BJ, Jia XQ, Gu LJ, Sung CK. Review on the qualitative and quantitative analysis of the mycotoxin citrinin. Food Control. 2006; 17:271–85. https://doi.org/10.1016/j.foodcont.2004.10.012
  47. Wang ML, Lu CH, Xu QY, Song SY, Hu ZY, Zheng ZH. Four New Citrinin derivatives from a marine-derived Penicillium sp. fungal strain. Molecules. 2013; 18:5723–35. https://doi.org/10.3390/molecules18055723
  48. Subramani R, Kumar R, Prasad P, Aalbersberg W. Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp. Asian Pac J Trop Biomed 2013; 3(4):291–96. https://doi.org/10.1016/S2221-1691(13)60065-9