Mikrobiol. Z. 2021; 83(4):35-42.
doi: https://doi.org/10.15407/microbiolj83.04.035

Viability and Colony Morphology Variation of Rhodococcus rhodochrous CNMN-Ac-05
in the Presence of Magnetite Nanoparticles

O. Postolachi1, I. Rastimesina1, V. Josan1, T. Gutul2

1Institute of Microbiology and Biotechnology
1 Academiei Str., Chişinău, MD-2028, Republic of Moldova

2Institute of Electronic Engineering and Nanotechnologies ‘D.Ghitu’
3/3 Academiei Str., Chişinău, MD-2028, Republic of Moldova

In recent decades the use of nanotechnologies in the remediation of xenobiotic substances has proven its effectiveness, but not its safety. Nanoparticles often accumulate in the remedied environment, having, over time, toxic effects on living organisms. In this context, research on the vital activity of microorganisms and their interaction with nanoparticles is of major importance. Aim of the research was to determine the influence of Fe3O4 nanoparticles, obtained by different ways (laboratory method and synthesis in the reactor) on the viability and colony morphology of Rhodococcus rhodochrous CNMN-Ac-05 strain. Methods. Encapsulated magnetite (Fe3O4) nanoparticles were synthesized by chemical co-precipitation method, using iron(II) sulfate and iron(III) chloride in the presence of poly-N-vinylpyrrolidone, used as a stabilizer. Fe3O4 SR (Synthesis in the Reactor) was produced in the multifunctional reactor VGR-50, at the same conditions. Cell biomass was determined on the spectrophotometer by the optical density at 540 nm,with subsequent recalculation to cell dry weight according to the calibration curve. The cell dry weight was determined by gravimetric method. The morphological features of the rhodococci colonies were described according to the standard microbiological method. Results. It was established that magnetite nanoparticles in concentrations of 1–100 mg/L were not toxic to the R. rhodochrous strain, had a positive effect on the viability of rhodococci by stimulating the growth of biomass, regardless of their concentration and the method of their synthesis. In the presence of Fe3O4 nanoparticles the population dissociated to S1, S2, R1, R2 forms, and S-R type of colonies, while the basic morphological features of R. rhodochrous colonies corresponded to type S1. Conclusions. The optimal concentration of magnetite nanoparticles, which stimulated the growth and development of R. rhodochrous was 25 mg/L for Fe3O4 and 50 mg/L Fe3O4 SR. At all concentration of Fe3O4 nanoparticles the main colony morphotype of the rhodococci was smooth S1-type; the new types of colonies represented only 0.1–0.6% of the population, and the lowest degree of variability corresponded with the highest colony-forming units index.

Keywords: rhodococci, magnetite NPs, colony morphology.

Full text (PDF, in English)

  1. Jones AL, Goodfellow M, Genus IV. Rhodococcus. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Ludwig W, editors. Bergey’s Manual of Systematic Bacteriology. 2nd ed., Vol. 5: The Actinobacteria. Springer Science & Business Media; 2012. p. 437–448. https://doi.org/10.1007/978-0-387-68233-4
  2. Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, et al. Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol. 2004; 50:75–86. https://doi.org/10.1016/j.femsec.2004.06.002
  3. Belfiore C, Curia MV, Farias ME. Characterization of Rhodococcus sp. A5wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Rev Argent Microbiol. 2018; 50(3):311–322. https://doi.org/10.1016/j.ram.2017.07.005
  4. LeBlanc JC, Gonçalves ER, Mohn WW. Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol. 2008; 74:2627–2636. https://doi.org/10.1128/AEM.02711-07
  5. Magdanova LA, Golyasnaya NV. Heterogeneity as an adaptive trait of microbial populations. Microbiology. 2013; 82:1–10. https://doi.org/10.1134/S0026261713010074
  6. Kuyukina MS, Ivshina IB. Application of Rhodococcus in bioremediation of contaminated environments. In: Alvarez HM, editor. Biology of Rhodococcus. Microbiology monographs. Vol. 16. Springer-Verlag Berlin Heidelberg. 2010; p. 231–262. https://doi.org/10.1007/978-3-642-12937-7_9
  7. Gurtler V, Seviour RJ. Systematics of members of the genus Rhodococcus (Zopf 1891) Emend Goodfellow, et al. 1998. In: Alvarez HM, editor. Biology of Rhodococcus. Microbiology monographs. Vol. 16. Springer-Verlag Berlin Heidelberg. 2010; p. 1–28. https://doi.org/10.1007/978-3-642-12937-7_1
  8. Krivoruchko A, Kuyukina M, Ivshina I. Advanced Rhodococcus biocatalysts for environmental biotechnologies. Catalysts. 2019; 9:236. https://doi.org/10.3390/catal9030236
  9. Chen BS, Otten LG, Resch V, Muyzer G, Hanefeld U. Draft genome sequence of Rhodococcus rhodochrous strain ATCC 17895. Stand Genom Sci. 2013; 9(1):175–84. https://doi.org/10.4056/sigs.4418165
  10. Ansari F, Grigoriev P, Libor S, Tothill IE, Ramsden JJ. DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng. 2009; 102(5):1505–1512. https://doi.org/10.1002/bit.22161
  11. Bardania H, Raheb J, Mohammad-Beigi H, Rasekh B, Arpanaei A. Desulfurization activity and reusability of magnetite nanoparticle–coated Rhodococcus erythropolis FMF and R. erythropolis IGTS8 bacterial cells. Biotechnol Appl Biochem. 2013; 60(3):323–329. https://doi.org/10.1002/bab.1090
  12. Hou J, Liu F, Wu N, Ju J, Yu B. Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain. J Nanobiotechnology. 2016; 14:5. https://doi.org/10.1186/s12951-016-0158-0
  13. Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett. 2018; 40:237–248. https://doi.org/10.1007/s10529-017-2477-0
  14. Wannoussa W, Masy T, Lambert SD, Heinrichs B, Tasseroul L, Al-Ahmad A, et al. Effect of iron nanoparticles synthesized by a sol-gel process on Rhodococcus erythropolis T902.1 for biphenyl degradation. J Water Resource Prot. 2015; 7:264–277. https://doi.org/10.4236/jwarp.2015.73021
  15. Auffan M, Achouak W, Rose J, Chanerac C, Waite DT, Masion A, et al. Relation between the redox state of ironbased nanoparticles and their cytotoxicity towards Escherichia coli. Environ Sci Technol. 2008; 42(17):6730–6735. https://doi.org/10.1021/es800086f
  16. Auffan M, Rose J, Wiesner M, Bottero J. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut. 2009; 157(4):1127–1133. https://doi.org/10.1016/j.envpol.2008.10.002
  17. Ackermann MA. A functional perspective on phenotypic heterogeneity in microorganisms. Nature Reviews. Microbiology. 2015; 13:497–508. https://doi.org/10.1038/nrmicro3491
  18. González-Cabaleiro R, Mitchell AM, Smith W, Wipat A, Ofițeru ID. Heterogeneity in pure microbial systems: experimental measurements and modeling. Front Microbiol. 2017; 8:1813. https://doi.org/10.3389/fmicb.2017.01813
  19. Kolomytseva MP, Solyanikova IP, Golovlev EL, Golovleva LA. Heterogeneity of Rhodococcus opacus 1CP as a response to stress induced by chlorophenols. Appl Biochem Microbiol. 2005; 41(5):474–479. https://doi.org/10.1007/s10438-005-0085-6
  20. Solyanikova IP, Suzina NE, Emelyanova EV, Polivtseva VN, Pshenichnikova AB, Lobanok AG, et. Morphological, physiological, and biochemical characteristics of a benzoate-degrading strain Rhodococcus opacus 1CP under stress conditions. Microbiology. 2017; 86(2):202–212. https://doi.org/10.1134/S0026261717020199
  21. Cincilei A, Tolocichina S, Rastimesina I, Delort A-M, Besse-Hoggan P, Sancelme M. Removal of aqueous benzothiazoles using immobilized bacteria. Proceedings of 34th AMOP Technical Seminar on Environmental Contamination and Response. 2011; 74–82.
  22. Gutul T, Rastimesina I, Postolachi O, Nicorici A, Dvornikov D, Petrenco P. Synthesis and biological application of magnetite nanoparticles. Mold J Phys Sci. 2015; 14(3–4):177–188.
  23. Yamada T, Takahama Y, Yamada Y. Biodegradation of 2,4-tribromophenol by Ochrobactrum sp. strain TB01. Biosci Biotechnol Biochem. 2008; 72(50):1264–1271. https://doi.org/10.1271/bbb.70755
  24. Egorov NS. [Practical Work on Microbiology]. Moscow: Publishing house of Moscow, University press; 1995. Russian.
  25. Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019; 10:2814. https://doi.org/10.3389/fmicb.2019.02814
  26. Grote J, Krysciak D, Streit WR. Phenotypic heterogeneity, a phenomenon that may explain why quorum sensing does not always result in truly homogenous cell behavior. Appl Environ Microbiol. 2015; 81(16):5280–5289. https://doi.org/10.1128/AEM.00900-15
  27. Konovalova EI, Solyanikova IP, Golovleva LA. Degradation of 4-chlorophenol by the strain Rhodococcus opacus 6a. Microbiology. 2009; 78(6):805–807. https://doi.org/10.1134/S0026261709060204
  28. Stancu MM. Response of Rhodococcus erythropolis strain IBBPo1 to toxic organic solvents. Braz J Microbiol. 2015; 46(4):1009–1018. https://doi.org/10.1590/S1517-838246420140462
  29. Josan V, Rastimesina I, Postolachi O. Influence of support material on heterogeneity of Rhodococcus rhodochrous. Microorganisms: ecology, physiology, biotechnology problems: Materials of all-Russian conference with international participation. Moscow: MAKS Press, 2019.
  30. Iwabuchi N, Sunairi M, Anzai H, Nakajima M, Harayama SH. Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol. 2000; 66(11):5073–5077. https://doi.org/10.1128/AEM.66.11.5073-5077.2000