Mikrobiol. Z. 2021; 83(3):92-109.
doi: https://doi.org/10.15407/microbiolj83.03.092

Biotechnological Potential of the Acinetobacter Genus Bacteria

T.P. Pirog1,2, D.A. Lutsai1, F.V. Muchnyk2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Until recently, there were rare scientific reports on the biotechnological potential of non-pathogenic bacteria of the Acinetobacter genus. Although the first reports about the practically valuable properties of these bacteria date back to the 70s and 80s of the twentieth century and concerned the synthesis of the emulsan bioemulsifier. In the last decade, interest in representatives of the Acinetobacter genus as objects of biotechnology has significantly increased. The review presents current literature data on the synthesis by bacteria of this genus of high-molecular emulsifiers, low-molecular biosurfactants of glyco- and aminolipid nature, enzymes (lipase, agarase, chondroitinase), phytohormones, as well as their ability to solubilize phosphates and decompose various xenobiotics (aliphatic and aromatic hydrocarbons, pesticides, insecticides). Prospects for practical application of Acinetobacter bacteria and the metabolites synthesized by them in environmental technologies, agriculture, various industries and medicine are discussed. The data of own experimental studies on the synthesis and biological activity (antimicrobial, anti-adhesive, ability to destroy biofilms) of biosurfactants synthesized by A. calcoaceticus IMV B-7241 strain and their role in the degradation of oil pollutants, including complex ones with heavy metals, are presented. The ability of A. calcoaceticus IMV B-7241 to the simultaneous synthesis of phytohormones (auxins, cytokinins, gibberellins) and biosurfactants with antimicrobial activity against phytopathogenic bacteria allows us to consider this strain as promising for practical use in crop production to increase crop yields.

Keywords: Acinetobacter genus, biosurfactants, bioemulsifiers, enzymes, phytohormones, degradation of xenobiotics.

Full text (PDF, in English)

  1. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact. 2016; 15(1):203. https://doi.org/10.1186/s12934-016-0603-7
  2. Contesini FJ, Melo RR, Sato HH. An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol. 2018; 38(3):321-34. https://doi.org/10.1080/07388551.2017.1354354
  3. Olishevska S, Nickzad A, Déziel E. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl Microbiol Biotechnol. 2019; 103(3):1189-1215. https://doi.org/10.1007/s00253-018-9541-0
  4. Procópio RE, Silva IR, Martins MK, Azevedo JL, Araújo JM. Antibiotics produced by Streptomyces. Braz J Infect Dis. 2012;16(5):466-71. https://doi.org/10.1016/j.bjid.2012.08.014
  5. Xiao L, Deng Z, Liu T. [Progress in developing and applying Streptomyces chassis: a review]. Wei Sheng Wu Xue Bao. 2016; 56(3):441-53. Chinese.
  6. Bilal M, Guo S, Iqbal HMN, Hu H, Wang W, Zhang X. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. World J Microbiol Biotechnol. 2017; 33(10):191. https://doi.org/10.1007/s11274-017-2356-9
  7. Jiang J, Zu Y, Li X, Meng Q, Long X. Recent progress towards industrial rhamnolipids fermentation: process optimization and foam control. Bioresour Technol. 2020; 298:122394. https://doi.org/10.1016/j.biortech.2019.122394
  8. Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ, Zannoni D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol. 2020; 104(20):8567-94. https://doi.org/10.1007/s00253-020-10861-z
  9. Pirog TP, Petrenko NM, Skrotska OI, Paliichuk OI, Shevchuk TA, Iutynska GO. Practically valuable properties of the surfactant synthesized by Rhodococcus genus actinobacteria. Mikrobiol Z. 2020; 82(4):94-109. https://doi.org/10.15407/microbiolj82.04.094
  10. Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol. 2015; 99(6):2533-48. https://doi.org/10.1007/s00253-015-6439-y
  11. Al Atrouni A, Joly-Guillou ML, Hamze M, Kempf M. Reservoirs of non-baumannii Acinetobacter species. Front Microbiol. 2016; 7:49. https://doi.org/10.3389/fmicb.2016.00049
  12. Askari N, Momtaz H, Tajbakhsh E. Acinetobacter baumannii in sheep, goat, and camel raw meat: virulence and antibiotic resistance pattern. AIMS Microbiol. 2019; 5(3):272-84. https://doi.org/10.3934/microbiol.2019.3.272
  13. Malta RCR, Ramos GLPA, Nascimento JDS. From food to hospital: we need to talk about Acinetobacter spp. Germs. 2020; 10(4):210-7. https://doi.org/10.18683/germs.2020.1207
  14. Zhao YH, Chen LY, Tian ZJ, Sun Y, Liu JB, Huang L. Characterization and application of a novel bioemulsifier in crude oil degradation by Acinetobacter beijerinckii ZRS. J Basic Microbiol. 2016; 56(2):184-95. https://doi.org/10.1002/jobm.201500487
  15. Vázquez-Vázquez JL, Ortega-de ND, Huerta-Ochoa S, Gimeno M. Novel exopolysaccharide produced by Acinetobacter bouvetii UAM25: production, characterization and PAHs bioemulsifying capability. Revista Mexicana de Ingenierıa Quımica. 2017, 16(3):721-33.
  16. Adetunji AI, Olaniran AO. Production and characterization of bioemulsifiers from Acinetobacter strains isolated from lipid-rich wastewater. Biotech. 2019; 9(4):151. https://doi.org/10.1007/s13205-019-1683-y
  17. Chen J, Huang PT, Zhang KY, Ding FR. Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil. J Appl Microbiol. 2012;112(4):660-71. https://doi.org/10.1111/j.1365-2672.2012.05242.x
  18. Dong H, Xia W, Dong H, She Y, Zhu P, Liang K, et al. Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery. Front Microbiol. 2016; 7:1710. https://doi.org/10.3389/fmicb.2016.01710
  19. Zhu C, Zhang J, Zhang J, Jiang Y, Shen Z, Guan H, et al. Purification and characterization of chondroitinase ABC from Acinetobacter sp. C26. Int J Biol Macromol. 2017; 95:80-6. https://doi.org/10.1016/j.ijbiomac.2016.10.044
  20. Ahmed EH, Raghavendra T, Madamwar D. An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: аpplication for ethyl caprylate synthesis. Bioresour Technol. 2010;101(10):3628-34. https://doi.org/10.1016/j.biortech.2009.12.107
  21. Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, et al. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett. 2009; 31(2):277-81. https://doi.org/10.1007/s10529-008-9867-2
  22. Gulati A, Vyas P, Rahi P, Kasana RC. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol. 2009; 58(4):371-7. https://doi.org/10.1007/s00284-008-9339-x
  23. Lee M, Woo SG, Ten LN. Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil. World J Microbiol Biotechnol. 2012; 28(5):2057-67. https://doi.org/10.1007/s11274-012-1008-3
  24. Wang W, Chen X, Yan H, Hu J, Liu X. Complete genome sequence of the cyprodinil-degrading bacterium Acinetobacter johnsonii LXL_C1. Microb Pathog. 2019; 127:246-9. https://doi.org/10.1016/j.micpath.2018.11.016
  25. Sharma V, Lin J. Draft genome sequence of phenol degrading Acinetobacter sp. strain V2, isolated from oil contaminated soil. Braz J Microbiol. 2017; 48(2):189-90. https://doi.org/10.1016/j.bjm.2016.06.015
  26. Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL. Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol. 1979; 37(3):402-8. https://doi.org/10.1128/aem.37.3.402-408.1979
  27. Rosenberg E, Perry A, Gibson DT, Gutnick DL. Emulsifier of Arthrobacter RAG-1: specificity of hydrocarbon substrate. Appl Environ Microbiol. 1979; 37(3):409-13. https://doi.org/10.1128/aem.37.3.409-413.1979
  28. Zuckerberg A, Diver A, Peeri Z, Gutnick DL, Rosenberg E. Emulsifier of Arthrobacter RAG-1: chemical and physical properties. Appl Environ Microbiol. 1979; 37(3):414-20. https://doi.org/10.1128/aem.37.3.414-420.1979
  29. Zhao Z, Wong JW. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene. Environ Technol. 2009; 30(3):291-9. https://doi.org/10.1080/09593330802630801
  30. Pirog TP, Antonyuk SI, Karpenko YV, Shevchuk TA. The influence of conditions of Acinetobacter calcoaceticus K-4 strain cultivation on surface-active substances synthesis. Appl Biochem Microbiol 2009; 45: 272-8. https://doi.org/10.1134/S0003683809030065
  31. Rooney AP, Price NP, Ray KJ, Kuo TM. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett. 2009; 295(1):82-7. https://doi.org/10.1111/j.1574-6968.2009.01581.x
  32. Hošková M, Schreiberová O, Ježdík R, Chudoba J, Masák J, Sigler K, et al. Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol. 2013;130:510-6. https://doi.org/10.1016/j.biortech.2012.12.085
  33. Prakasam G, Anusha R, Ramesh SS. Rhamnolipid production among clinical and skin isolates of healthy individuals of Acinetobacter species: The first report. Int J Appl Basic Med Res. 2013; 3(2):133. https://doi.org/10.4103/2229-516X.117103
  34. Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šír M, Čejková A, et al. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol. 2015; 193:45-51. https://doi.org/10.1016/j.jbiotec.2014.11.014
  35. Bao M, Pi Y, Wang L, Sun P, Li Y, Cao L. Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3-2 and its biodegradation of crude oil. Environ Sci Process Impacts. 2014;16(4):897-903. https://doi.org/10.1039/C3EM00600J
  36. Zou C, Wang M, Xing Y, Lan G, Ge T, Yan X, et al. Characterization and optimization of biosurfactants produced by Acinetobacter baylyi ZJ2 isolated from crude oil-contaminated soil sample toward microbial enhanced oil recovery applications. Biochem Eng J. 2014; 90:49-58. https://doi.org/10.1016/j.bej.2014.05.007
  37. Khan A, Tanveer S, Alia S, Anees M, Sultan A, Iqbal M, et al. Role of nutrients in bacterial biosurfactant production and effect of biosurfactant production on petroleum hydrocarbon biodegradation. Ecol Eng. 2017; 104:158-64. https://doi.org/10.1016/j.ecoleng.2017.04.023
  38. Parthipan P, Elumalai P, Sathishkumar K, Sabarinathan D, Murugan K, Benelli G, et al. Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3. Biotech. 2017; 7(5):278. https://doi.org/10.1007/s13205-017-0902-7
  39. Muthukamalam S, Sivagangavathi S, Dhrishya D, Sudha Rani S. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria. Braz J Microbiol. 2017; 48(4):637-47. https://doi.org/10.1016/j.bjm.2017.02.007
  40. Ohadi M, Dehghannoudeh G, Forootanfar H, Shakibaie M, Rajaee M. Investigation of the structural, physicochemical properties, and aggregation behavior of lipopeptide biosurfactant produced by Acinetobacter junii B6. Int J Biol Macromol. 2018; 112:712-9. https://doi.org/10.1016/j.ijbiomac.2018.01.209
  41. Chettri B, Singha NA, Mukherjee A, Rai AN, Chattopadhyay D, Singh AK. Hydrocarbon degradation potential and competitive persistence of hydrocarbonoclastic bacterium Acinetobacter pittii strain ABC. Arch Microbiol. 2019; 201(8):1129-40. https://doi.org/10.1007/s00203-019-01687-z
  42. Ohadi M, Forootanfar H, Dehghannoudeh G, Eslaminejad T, Ameri A, Shakibaie M, et al. Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6. Microb Pathog. 2020; 138:103806. https://doi.org/10.1016/j.micpath.2019.103806
  43. Yuan H, Yao J, Masakorala K, Wang F, Cai M, Yu C. Isolation and characterization of a newly isolated pyrene-degrading Acinetobacter strain USTB-X. Environ Sci Pollut Res Int. 2014; 21(4):2724-32. https://doi.org/10.1007/s11356-013-2221-9
  44. Shalini D, Benson A, Gomathi R, Henry AJ, Jerritta S, Melvin Joe M. Isolation, characterization of glycolipid type biosurfactant from endophytic Acinetobacter sp. ACMS25 and evaluation of its biocontrol efficiency against Xanthomonas oryzae. Biocatal Agric Biotechnol. 2017; 11:252-8. https://doi.org/10.1016/j.bcab.2017.07.013
  45. Karlapudi AP, Venkateswarulu TC, Srirama K, Kota RK, Mikkili I, Kodali VP. Evaluation of anticancer, anti-microbial and anti-biofilm potential of biosurfactant extracted from an Acinetobacter M6 strain. J King Saud Univer. 2020; 32(1):223-7. https://doi.org/10.1016/j.jksus.2018.04.007
  46. Mujumdar S, Joshi P, Karve N. Production, characterization, and applications of bioemulsifiers (BE) and biosurfactants (BS) produced by Acinetobacter spp.: a review. J Basic Microbiol. 2019; 59(3):277-87. https://doi.org/10.1002/jobm.201800364
  47. Pirog TP, Nikituk LV, Antonuk SI, Shevchuk TA, Iutynskaya GA. [Intensification of Acinetobacter calcoaceticus IMV B-7241 surfactants synthesis on waste sunflower oil]. Mikrobiol Z. 2018; 80(1):15-26. Russian. https://doi.org/10.15407/microbiolj80.01.015
  48. Pirog T, Shulyakova M, Sofilkanych A, Shevchuk T, Mashchenko O. Biosurfactant synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 on byproduct of biodiesel production. Food Bioprod Process. 2015; 93:11−8. https://doi.org/10.1016/j.fbp.2013.09.003
  49. Pirog TP, Konon AD, Beregovaya KA, Shulyakova MA. Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiology. 2014; 83(6):732-9. https://doi.org/10.1134/S0026261714060150
  50. Pirog TP, Savenko IV, Shevchuk TA. [Effect of cultivation condition of Acinetobacter calcoaceticus IMV B-7241 on antiadhesive properties of surfactants]. Mikrobiol Z. 2016; 78(1):2−12. Russian. https://doi.org/10.15407/microbiolj78.01.002
  51. Pirog TP, Savenko IV, Shevchuk TA, Krutous NV, Iutynska GO. [Antimicrobial poperties surfactants synthesized under different cultivation conditions of Acinetobacter calcoaceticus EMV B-7241]. Mikrobiol Z. 2016; 78(3):2-12. Ukrainian. https://doi.org/10.15407/microbiolj78.03.002
  52. 52. Pirog TP, Savenko IV, Lutsai DA, Shevchuk TA, Iutynska GO. [The role of Acinetobacter calcoaceticus IMV B-7241 surfactants in biofilms destruction]. Mikrobiol Z. 2017; 79(4):21−9. Russian. https://doi.org/10.15407/microbiolj79.04.021
  53. Pirog TP, Lutsai DA, Shevchuk TA, Iutynska GO, Elperin IV. [Antimicrobial and anti-adhesive activity of surfactants synthesized by Acinetobacter calcoaceticus IMV B-7241 on technical glycerol]. Mikrobiol Z. 2018; 80(2):14-27. Ukrainian. https://doi.org/10.15407/microbiolj80.02.014
  54. Pirog TP, Lutsai DA, Antonuk SI, Elperin IV. The properties of surfactants synthesized by Acinetobacter calcoaceticus IMV B-7241 on refined and waste sunflower oil. Biotechnologia Acta. 2018; 11(6):82-91. https://doi.org/10.15407/biotech11.06.082
  55. Bayer EA, Rosenberg E, Gutnick D. The isolation of cell surface mutants of Acinetobacter calcoaceticus RAG-1. J Gen Microbiol. 1981; 127(2):295-300. https://doi.org/10.1099/00221287-127-2-295
  56. Vaneechoutte M, Tjernberg I, Baldi F, Pepi M, Fani R, Sullivan ER, et al. Oil-degrading Acinetobacter strain RAG-1 and strains described as 'Acinetobacter venetianus sp. nov.' belong to the same genomic species. Res Microbiol. 1999; 150(1):69-73. https://doi.org/10.1016/S0923-2508(99)80047-3
  57. Kaplan N, Zosim Z, Rosenberg E. Reconstitution of emulsifying activity of Acinetobacter calcoaceticus BD4 emulsan by using pure polysaccharide and protein. Appl Environ Microbiol. 1987; 53(2):440-6. https://doi.org/10.1128/aem.53.2.440-446.1987
  58. Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S, Ron EZ. Production of biodispersan by Acinetobacter calcoaceticus  A2. Appl Environ Microbiol. 1988; 54(2):317-22. https://doi.org/10.1128/aem.54.2.317-322.1988
  59. Rosenberg E, Schwartz Z, Tenenbaum A, Rubinovitz C, Legmann R, Ron EZ. A microbial polymer that changes the surface properties of limestone: effect of biodispersan in grinding limestone and making paper. J Dispersion Sci Technol. 1989; 10(3):241-50. https://doi.org/10.1080/01932698908943173
  60. Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, et al. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol. 1995; 61(9):3240-4. https://doi.org/10.1128/aem.61.9.3240-3244.1995
  61. Rosenberg E, Ron EZ. High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol. 1999; 52(2):154-62. https://doi.org/10.1007/s002530051502
  62. Mercaldi MP, Dams-Kozlowska H, Panilaitis B, Joyce AP, Kaplan DL. Discovery of the dual polysaccharide composition of emulsan and the isolation of the emulsion stabilizing component. Biomacromolecules. 2008; 9(7):1988-96. https://doi.org/10.1021/bm800239p
  63. Mnif I, Ghribi D. High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications. World J Microbiol Biotechnol. 2015; 31(5):691-706. https://doi.org/10.1007/s11274-015-1830-5
  64. Alizadeh-Sani M, Hamishehkar H, Khezerlou A, Azizi-Lalabadi M, Azadi Y, Nattagh-Eshtivani E, et al. Bioemulsifiers derived from microorganisms: applications in the drug and food industry. Adv Pharm Bull. 2018; 8(2):191-9. https://doi.org/10.15171/apb.2018.023
  65. Jagtap S, Yavankar S, Pardesi K, Chopade B. Production of bioemulsifier by Acinetobacter species isolated from healthy human skin. Indian J Exp Biol. 2010; 48(1):70-6.
  66. Ortega-de la Rosa ND, Vázquez-Vázquez JL, Huerta-Ochoa S, Gimeno M, Gutiérrez-Rojas M. Stable bioemulsifiers are produced by Acinetobacter bouvetii UAM25 growing in different carbon sources. Bioprocess Biosyst Eng. 2018; 41(6):859-69. https://doi.org/10.1007/s00449-018-1920-5
  67. Wang HK, Shao J, Wei YJ, Zhang J, Qi W. A novel low-temperature alkaline lipase from Acinetobacter johnsonii LP28 suitable for detergent formulation. Food Technol Biotechnol. 2011; 49(1):96-102.
  68. Zheng X, Chu X, Zhang W, Wu N, Fan Y. A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: gene cloning and characterisation. Appl Microbiol Biotechnol. 2011; 90(3):971-80. https://doi.org/10.1007/s00253-011-3154-1
  69. Gururaj P, Ramalingam S, Nandhini Devi G, Gautam P. Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07. Braz J Microbiol. 2016; 47(3):647-57.
  70. De Santi C, Altermark B, de Pascale D, Willassen NP. Bioprospecting around arctic islands: marine bacteria as rich source of biocatalysts. J Basic Microbiol. 2016; 56(3):238-53. https://doi.org/10.1002/jobm.201500505
  71. Bharathi D., Rajalakshmi G. Microbial lipases: an overview of screening, production and purification. Biocatal Agricultur Biotechnol. 2019. https://doi.org/10.1016/j.bcab.2019.101368
  72. Filho DG, Silva AG, Guidini CZ. Lipases: sources, immobilization methods, and industrial applications. Appl Microbiol Biotechnol. 2019; 103(18):7399-423. https://doi.org/10.1007/s00253-019-10027-6
  73. Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact. 2020; 19(1):169. https://doi.org/10.1186/s12934-020-01428-8
  74. Patel R, Prajapati V, Trivedi U, Patel K. Optimization of organic solvent-tolerant lipase production by Acinetobacter sp. UBT1 using deoiled castor seed cake. Biotech. 2020; 10(12):508. https://doi.org/10.1007/s13205-020-02501-0
  75. Lakshmikanth M, Manohar S, Lalitha J. Purification and characterization of β-agarase from agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. Process Biochem. 2009; 44(9):999-1003. https://doi.org/10.1016/j.procbio.2009.04.025
  76. Leema Roseline T, Sachindra N. Characterization of extracellular agarase production by Acinetobacter junii PS12B, isolated from marine sediments. Biocatal Agricultur Biotechnol. 2016; 6:219-26. https://doi.org/10.1016/j.bcab.2016.04.007
  77. Snellman EA, Colwell RR. Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential. J Ind Microbiol Biotechnol. 2004; 31(9):391-400. https://doi.org/10.1007/s10295-004-0167-0
  78. Bradbury EJ, Carter LM. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull. 2011; 84(4-5):306-16. https://doi.org/10.1016/j.brainresbull.2010.06.015
  79. DePaul MA, Lin CY, Silver J, Lee YS. Combinatory repair strategy to promote axon regeneration and functional recovery after chronic spinal cord injury. Sci Rep. 2017; 7(1):9018. https://doi.org/10.1038/s41598-017-09432-6
  80. Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Physiol Rev. 2018; 98(2):881-917. https://doi.org/10.1152/physrev.00017.2017
  81. Muir E, De Winter F, Verhaagen J, Fawcett J. Recent advances in the therapeutic uses of chondroitinase ABC. Exp Neurol. 2019; 321:113032. https://doi.org/10.1016/j.expneurol.2019.113032
  82. Hong SW, Kim BT, Shin HY, Kim WS, Lee KS, Kim YS, et al. Purification and characterization of novel chondroitin ABC and AC lyases from Bacteroides stercoris HJ-15, a human intestinal anaerobic bacterium. Eur J Biochem. 2002; 269(12):2934-40. https://doi.org/10.1046/j.1432-1033.2002.02967.x
  83. Fu J, Jiang Z, Chang J, Han B, Liu W, Peng Y. Purification, characterization of chondroitinase ABC from Sphingomonas paucimobilis and in vitro cardiocytoprotection of the enzymatically degraded CS-A. Int J Biol Macromol. 2018; 115:737-45. https://doi.org/10.1016/j.ijbiomac.2018.04.117
  84. Fang Y, Yang S, Fu X, Xie W, Li L, Liu Z, et al. Expression, purification and characterization of chondroitinase AC II from marine bacterium Arthrobacter sp. CS01. Mar Drugs. 2019; 17(3):185. https://doi.org/10.3390/md17030185
  85. Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, et al. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol. 2011; 21(6):556-66. https://doi.org/10.4014/jmb.1012.12006
  86. Zhao L, Wang F, Zhao J. Identification and functional characteristics of chlorpyrifos-degrading and plant growth promoting bacterium Acinetobacter calcoaceticus. J Basic Microbiol. 2014; 54(5):457-63. https://doi.org/10.1002/jobm.201200639
  87. Syed-Ab-Rahman SF, Carvalhais LC, Chua E, Xiao Y, Wass TJ, Schenk PM. Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth. Front Plant Sci. 2018; 9:1502. https://doi.org/10.3389/fpls.2018.01502
  88. Lutz S, Thuerig B, Oberhaensli T, Mayerhofer J, Fuchs JG, Widmer F, et al. Harnessing the microbiomes of suppressive composts for plant protection: from metagenomes to beneficial microorganisms and reliable diagnostics. Front Microbiol. 2020; 11:1810. https://doi.org/10.3389/fmicb.2020.01810
  89. Pirog T, Leonova N, Shevchuk T, Savenko I, Iutinska H. [Synthesis of phytohormones bacteria of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii IMV B-7405 - producers of surface-active substances]. Proceedings of the National Academy of Sciences of Belarus. Biological series. 2017; 1:90-5. Russian.
  90. Pirog TP, Havrylkina DV, Leonova NO, Shevchuk TA, Iutynska GO. [Synthesis of biologically active gibberellins GA4 and GA7 by microorganisms]. Mikrobiol Z. 2019; 81(2):90−109. Ukrainian. https://doi.org/10.15407/microbiolj81.02.090
  91. Pirog T, Leonova N, Piatetska D, Klymenko N, Shevchuk T. Influence of tryptophan on auxin-synthesizing ability of surfactant producer Acinetobacter calcoaceticus IMV B-7241. Ukrainian Food J. 2020; 9(1):175−84. https://doi.org/10.24263/2304-974X-2020-9-1-15
  92. Pirog TP, Konon AD, Sofilkanich AP, Iutinskaia GA. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl Biochem Microbiol. 2013; 49(4):360-7. https://doi.org/10.1134/S000368381304011X
  93. Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, et al. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch Microbiol. 2010; 192(11):975-83. https://doi.org/10.1007/s00203-010-0615-3
  94. Li C, Li Q, Wang Z, Ji G, Zhao H, Gao F, et al. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Sci Rep. 2019; 9(1):15291. https://doi.org/10.1038/s41598-019-51804-7
  95. Bharwad K, Rajkumar S. Modulation of PQQdependent glucose dehydrogenase (mGDH and sGDH) activity by succinate in phosphate solubilizing plant growth promoting Acinetobacter sp. SK2. Biotech. 2020; 10(1):5. https://doi.org/10.1007/s13205-019-1991-2
  96. Rajput MS, Naresh Kumar G, Rajkumar S. Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate. Arch Microbiol. 2013; 195(2):81-8. https://doi.org/10.1007/s00203-012-0850-x
  97. Iyer B, Rajkumar S. Succinate irrepressible periplasmic glucose dehydrogenase of Rhizobium sp. Td3 and SN1 contributes to its phosphate solubilization ability. Arch Microbiol. 2019; 201(5):649-59. https://doi.org/10.1007/s00203-019-01630-2
  98. Joshi E, Iyer B, Rajkumar S. Glucose and arabinose dependent mineral phosphate solubilization and its succinate-mediated catabolite repression in Rhizobium sp. RM and RS. J Biosci Bioeng. 2019; 128(5):551-7. https://doi.org/10.1016/j.jbiosc.2019.04.020
  99. Espeche ME, MacCormack WP, Fraile ER. Factors affecting growth of an n-hexadecane degrader Acinetobacter species isolated from a highly polluted urban river. Int Biodeterior Biodegrad. 1994; 33:187-96. https://doi.org/10.1016/0964-8305(94)90037-X
  100. Di Cello F, Pepi M, Baldi F, Fani R. Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus. Res Microbiol. 1997; 148(3):237-49. https://doi.org/10.1016/S0923-2508(97)85244-8
  101. Throne-Holst M, Markussen S, Winnberg A, Ellingsen TE, Kotlar HK, Zotchev SB. Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl Microbiol Biotechnol. 2006; 72(2):353-60. https://doi.org/10.1007/s00253-005-0262-9
  102. Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO. Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol. 2007; 23:1149-59. https://doi.org/10.1007/s11274-007-9345-3
  103. Fischer R, Bleichrodt FS, Gerischer UC. Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression. Microbiology (Reading). 2008;154(Pt 10):3095-103. https://doi.org/10.1099/mic.0.2008/016907-0
  104. Sharma V, Lin J. Draft genome sequence of phenol degrading Acinetobacter sp. strain V2, isolated from oil contaminated soil. Braz J Microbiol. 2017; 48(2):189-90. https://doi.org/10.1016/j.bjm.2016.06.015
  105. Kang YS, Jung J, Jeon CO, Park W. Acinetobacter oleivorans sp. nov. is capable of adhering to and growing on diesel-oil. J Microbiol. 2011; 49(1):29-34. https://doi.org/10.1007/s12275-011-0315-y
  106. Jin Z, Guo Q, Zhang Z, Yan T. Biodegradation of type II pyrethroids and major degraded products by a newly isolated Acinetobacter sp. strain JN8. Can J Microbiol. 2014; 60(8):541-5. https://doi.org/10.1139/cjm-2014-0104
  107. Silambarasan S, Vangnai AS. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. J Hazard Mater. 2016; 302:426-36. https://doi.org/10.1016/j.jhazmat.2015.10.010
  108. Chen X, He S, Liu X, Hu J. Biobegradation and metabolic mechanism of cyprodinil by strain Acinetobacter sp. from a contaminated-agricultural soil in China. Ecotoxicol Environ Saf. 2018; 159:190-7. https://doi.org/10.1016/j.ecoenv.2018.04.047
  109. Yan DZ, Gan YT, Zhou H, Liu J, Li X. Draft genome sequence of cyclohexylamine-degrading strain Acinetobacter sp. YT-02 isolated. Curr Microbiol. 2018; 75(3):284-7. https://doi.org/10.1007/s00284-017-1377-9
  110. Zhou H, Han ZG, Fang T, Chen YY, Ning SB, Gan YT, et al. Characterization of a new cyclohexylamine oxidase from Acinetobacter sp. YT-02. Front Microbiol. 2018; 9:2848. https://doi.org/10.3389/fmicb.2018.02848
  111. Pidgorskyi VS, Nogina TM. Biodegradation of petroleum hydrocarbons by Actinobacteria and Acinetobacteria strains producing biosurfactant. Mikrobiol Z. 2016; 78(6):92−103. https://doi.org/10.15407/microbiolj78.06.092
  112. Wang Y, Wang Q, Liu L. Crude oil degrading fingerprint and the overexpression of oxidase and invasive genes for n-hexadecane and crude oil degradation in the Acinetobacter pittii H9-3 strain. Int J Environ Res Public Health. 2019; 16(2):188. https://doi.org/10.3390/ijerph16020188
  113. Dahal RH, Chaudhary DK, Kim J. Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil. Arch Microbiol. 2017; 199(5):701-10. https://doi.org/10.1007/s00203-017-1349-2
  114. Diallo MM, Vural C, Şahar U, Ozdemir G. Kurstakin molecules facilitate diesel oil assimilation by Acinetobacter haemolyticus strain 2SA through overexpression of alkane hydroxylase genes. Environ Technol. 2019:1-15. https://doi.org/10.1080/09593330.2019.1689301
  115. Nkem BM, Halimoon N, Yusoff FM, Johari WLW, Zakaria MP, Medipally SR, et al. Isolation, identification and diesel-oil biodegradation capacities of indigenous hydrocarbon-degrading strains of Cellulosimicrobium cellulans and Acinetobacter baumannii from tarball at Terengganu beach, Malaysia. Mar Pollut Bull. 2016; 107:261-8. https://doi.org/10.1016/j.marpolbul.2016.03.060
  116. Luo Q, Zhang JG, Shen XR, Fan ZQ, He Y, Hou DY. Isolation and characterization of marine diesel oil-degrading Acinetobacter sp. strain Y2. Ann Microbiol. 2013;63:633-40. https://doi.org/10.1007/s13213-012-0513-9
  117. Ho MT, Li MSM, McDowell T, MacDonald J, Yuan ZC. Characterization and genomic analysis of a diesel-degrading bacterium, Acinetobacter calcoaceticus CA16, isolated from Canadian soil. BMC Biotechnol. 2020; 20(1):39. https://doi.org/10.1186/s12896-020-00632-z
  118. Jiang L, Ruan Q, Li R, Li T. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. BS8Y. J Basic Microbiol. 2013; 53(3):224-30. https://doi.org/10.1002/jobm.201100460
  119. Liu Z, Xie W, Li D, Peng Y, Li Z, Liu S. Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. Int J Environ Res Public Health. 2016; 13(3):300. https://doi.org/10.3390/ijerph13030300
  120. Pirog TP, Shulyakova MO, Nikituk LV, Antonuk SI, Elperin IV. Industrial waste bioconversion into surfactants by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405. Biotechnologia Acta. 2017; 10(2):22−33. https://doi.org/10.15407/biotech10.02.022
  121. Zampolli J, Zeaiter Z, Di Canito A, Di Gennaro P. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus. Appl Microbiol Biotechnol. 2019; 103(3):1069−80. https://doi.org/10.1007/s00253-018-9539-7