Mikrobiol. Z. 2021; 83(1):68-77.
doi: https://doi.org/10.15407/microbiolj83.01.068

Comparison of Cell Sizes of Methicillin-Resistant Staphylococcus aureus
with Presence and Absence of the MecA Gene

O. Berhilevych1, V. Kasianchuk1, M. Kukhtyn2, P. Shubin1, A. Butsyk1

1Sumy State University
31 Sanatorna Str., Sumy, 40018, Ukraine

2Ternopil Ivan Puluj National Technical University
56 Ruska Str., Ternopil, 46001, Ukraine

Staphylococcus aureus is a pathogenic microorganism that causes a wide range of infectious diseases of humans and animals. Staphylococcus aureus produces a large number of toxins, in particular enterotoxins, which enter the body together with food and cause disorders in the gastrointestinal tract. Moreover, S. aureus has several mechanisms of antibiotic resistance, which greatly complicates prevention of bacteria spread as community-acquired and nosocomial infections. The aim of the work was to determine and compare the differences in size of methicillin-resistant strains of S. aureus with different resistance mechanisms by scanning electron microscopy (SEM). Methods. Disc diffusion method was used to establish the mechanism of antibiotic resistance of the obtained isolates. After description of antibiotic resistant and selection of S. aureus isolates with resistance to penicillin and oxicilin, an SEM of the strains and a further comparison of their morphological characteristics, in particular cell size, with the help of Djmaizer v.5.1.10 software was carried out. Results. 54 isolates of S. aureus, obtained from various environmental objects, dairy farms and food products, were tested. PCR revealed sequences of the mecA gene, which is responsible for bacteria resistance to beta-lactams. We determined the cells size of S. aureus isolates resistant to penicillin and oxycillin and performed a comparative analysis of their morphological characteristics using SEM. Conclusions. In the course of the study, it was found that S. aureus isolates with mecA gene (mecA+) have smaller cell size than S. aureus isolates without mecA gene (mecA-).

Keywords: МRSA, radius of bacterial cells, mecA+, mecA-, scanning electron microscopy.

Full text (PDF, in English)

  1. Bhunia AK. Microbes as a tool to defend against antibiotic resistance in food animal production. Indian Journal of Animal Health. 2019; 58(2):01–18. https://doi.org/10.36062/ijah.58.2SPL.2019.01-18
  2. Templier V, Roupioz Y. On the challenges of detecting whole Staphylococcus aureus cells with biosensors. Journal of Applied Microbiology. 2017; 123(5):1056–1067. https://doi.org/10.1111/jam.13510
  3. Kukhtyn MD, Horyuk YV, Horyuk VV, Yaroshenko TY, Vichko OI, Pokotylo OS. Biotype characterization of Staphylococcus aureus from milk and dairy products of private production in the western regions of Ukraine. Regulatory Mechanisms in Biosystems. 2017; 8(3):384–388. https://doi.org/10.15421/021760
  4. Al-Ashmawy MA, Sallam KI, Abd-Elghany SM, Elhadidy M, Tamura T. Prevalence, molecular characterization, and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus isolated from milk and dairy products. Foodborne pathogens and disease. 2016; 13(3):156–162. https://doi.org/10.1089/fpd.2015.2038
  5. Doulgeraki AI, Di Ciccio P, Ianieri A, Nychas GJE. Methicillin-resistant food-related Staphylococcus aureus: a review of current knowledge and biofilm formation for future studies and applications. Research in microbiology. 2017; 168(1):1–15. https://doi.org/10.1016/j.resmic.2016.08.001
  6. Butaye P, Argudín MA, Smith TC. Livestockassociated MRSA and its current evolution. Curr Clin Micro Rpt. 2016; 3(19):19–31. https://doi.org/10.1007/s40588-016-0031-9
  7. Kirmusaoğlu Sahra. MRSA and MSSA: The Mechanism of Methicillin Resistance and the Influence of Methicillin Resistance on Biofilm Phenotype of Staphylococcus aureus. Vol. 2. The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus, by Sahra Kirmusaoğlu. InTechOpen; 2017. p. 25–41. https://doi.org/10.5772/65452
  8. Jihasz-Kaszanytzky E, Janosi S, Somogyi P, Dan A, Van Der Graaf-Van Bloois L, Van Duijkeren E, et al. MRSA transmission between cows and humans. Emerging Infectious Diseases. 2007; 13:630–632. https://doi.org/10.3201/eid1304.060833
  9. Wang X, Li G, Xia X, Yang B, Xi M, Meng J. Antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus in retail foods in Shaanxi, China. Foodborne Pathog Dis. 2014; 11:281–286. https://doi.org/10.1089/fpd.2013.1643
  10. Mehli L, Hoel S, Thomassen GMB, Jakobsen AN, Karlsen H. The prevalence, genetic diversity and antibiotic resistance of Staphylococcus aureus in milk, whey, and cheese from artisan farm dairies. International Dairy Journal. 2017; 65:20–27. https://doi.org/10.1016/j.idairyj.2016.10.006
  11. Kukhtyn MD, Berhilevych OM, Kravcheniuk K, Shynkaruk O, Horyuk YV, Semaniuk N. Formation of biofilms on dairy equipment and the influence of disinfectants on them. Eastern-European Journal of Eenterprise Technologies. 2017; 5(89):26–33. https://doi.org/10.15587/1729-4061.2017.110488
  12. Papadopoulos P, Papadopoulos T, Angelidis AS, Boukouvala E, Zdragas A, Papa A, et al. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in northwestern Greece, Food Microbiology. 2018; 69:43–50. https://doi.org/10.1016/j.fm.2017.07.016
  13. Sergelidis D. Angelidis AS. Methicillin-resistant Staphylococcus aureus (MRSA): A controversial foodborne pathogen. Letters in Applied Microbiology. 2017; 64(6):409–418. https://doi.org/10.1111/lam.12735
  14. Berhilevych OM, Kasianchuk VV, Kukhtyn MD, Lotskin IM, Garkavenko TO, Shubin PA. Characteristics of antibiotic sensitivity of Staphylococcus aureus isolated from dairy farms in Ukraine. Regulatory Mechanisms in Biosystems. 2017; 8(4):559–563. https://doi.org/10.15421/021786
  15. Murray, Rosentthal, Pfaller. Medical Microbiology. Elsever; 2016.
  16. Connie R, Mahon DC. Lehman GM. Textbook of diagnostic microbiology. Fifth edition. Maryland Heights: Elsevier; 2015.
  17. Díaz-Visurraga J, Cárdenas G, García A. Morphological changes induced in bacteria as evaluated by electron microscopy. Microscopy: Science, Technology, Applications and Education A. Méndez-Vilas, J. Díaz, editors. 2010.
  18. Kownacki A, Szarek-Gwiazda E, Woźnicka O. The importance of scanning electron microscopy (SEM) in taxonomy and morphology of Chironomidae (Diptera). European Journal of Environmental Sciences. 2015; 5(1):41–44. https://doi.org/10.14712/23361964.2015.75
  19. Christine GG, Lindsey LL, Daniel RB, Timothy FB. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep. 2016; 6(1):1–8. https://doi.org/10.1038/srep26516
  20. Ying Z, Tao H, Danielle MJ, Andrew N, Li-Jung L, Joshua P, et al. Quantitating morphological changes in biological samples during scanning electron microscopy sample preparation with correlative super-resolution microscopy. PLOS ONE. 2017; 12(5):1–15. https://doi.org/10.1371/journal.pone.0176839
  21. Longzhu C, Akira I, Jian-Qi L, Hui-min N, Toshiki M, Yataro Horikawa, et al. Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrobial Agents and Chemotherapy. 2006; 50(2):428–438. https://doi.org/10.1128/AAC.50.2.428-438.2006
  22. Rajeshwari H, Nagveni S, Oli A, Parashar D, Kelmani RC. Morphological changes of Klebsiella pneumoniae in response to Cefotaxime: a scanning electron microscope study. World Journal of Microbiology and Biotechnology. 2009; 25(12):2263–2266. https://doi.org/10.1007/s11274-009-0126-z
  23. Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard, CLSI, USA. 2012.
  24. Ganai AW, Kotwal SK, Wani N, Malik MA, Jeelani R, Kour S, et al. Detection of mecA gene of methicillin-resistant Staphylococcus aureus by PCR assay from raw milk. Indian Journal of Animal Sciences. 2016; 86(5):508–511.
  25. Basanisi MG, La Bella G, Nobili G, Franconieri I, La Salandra G. Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food microbiology. 2017; 62:141–146. https://doi.org/10.1016/j.fm.2016.10.020
  26. Rahim A, Rachman A, Suhaili Z, Desa MN. The Evolution and Dissemination of Methicillin Resistance Determinant in Staphylococcus aureus. In: The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus. InTech; 2017. https://doi.org/10.5772/65514
  27. Rong SL, Leonard SN. Heterogeneous vancomycin-resistance in Staphylococcus aureus: a review of epidemiology, diagnosis and clinical significance. Ann Pharmacother. 2010; 44:844–850. https://doi.org/10.1345/aph.1M526
  28. Chavadi M, Narasanna R, Chavan A, Oli AK, Kelmani RC. Prevalence of Methicillin Resistant and Virulence Determinants in Clinical Isolates of Staphylococcus aureus. The Open Infectious Diseases Journal. 2018; 10:108–15. https://doi.org/10.2174/1874279301810010108