Mikrobiol. Z. 2020; 82(5):65-87.
doi: https://doi.org/10.15407/microbiolj82.05.065

Halotolerant Yeasts: Biodiversity and Potential Application

O.D. Ianieva

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Halotolerant yeasts represent a heterogeneous group of unicellular fungi able to survive and thrive under hypersaline conditions. This review examines the biodiversity of halotolerant yeasts in various habitats with high salt content and the potential practical applications of this group of microorganisms in industry and agriculture. Halotolerant yeasts are found in various habitats with elevated salt content, including seawater, hypersaline ponds and salterns, saline soils and wastewaters, salt-containing foods. Habitats with moderate salinity, e.g. seawater, food products, olive fermentation wastewaters can boast a comparatively large biodiversity of yeasts both ascomycetes and basidiomycetes. Hypersaline niches are mostly inhabited by pigmented and melanized yeasts and yeast-like fungi. The adaptability and robustness of halotolerant yeasts could be exploited in several biotechnological fields, mainly the food industry and bioremediation. Yeasts isolated from food products with elevated salt content are studied as potential starter cultures in the corresponding fermenting products due to their enzymatic and antimicrobial activity and probiotic characteristics. Marine yeasts are of an increasing interest due to their production of various hydrolytic enzymes, biofuel production using seawater, bioremediation of saline wastewaters and the probiotic potential in aquaculture. Halotolerant yeasts found in various saline wastewaters could be used in bioremediation of wastewaters with high salinity containing various organic pollutants. However more research is required to achieve practical utilization of this group of microorganisms.

Keywords: halotolerant yeasts, hypersaline habitats, potential applications, bioremediation, enzymes, food industry.

Full text (PDF, in Ukrainian)

  1. The Yeasts A Taxonomic Study. Fifth edition. In: C.P. Kurtzman, J.W. Fell, T. Boekhout, Editors. Amsterdam: Elsevier, 2011.
  2. Peter G, Takashima M, Cadez N. Yeast habitats: different but global. In: Yeasts in Natural Ecosystems: Ecology; 2017. p. 39-71. https://doi.org/10.1007/978-3-319-61575-2_2
  3. Kurtzman CP, Mateo RQ, Kolecka A, Theelen B, Robert V, Boekhout T. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Res; 15(6). https://doi.org/10.1093/femsyr/fov050
  4. Buzzini P, Turchetti B, Yurkov A. Extremophilic yeasts: the toughest yeasts around? Yeast. 2018; 35(8):487-97. https://doi.org/10.1002/yea.3314
  5. Vashishtha A, Meghwanshi GK. Fungi Inhabiting in Hypersaline Conditions: An Insight. In: Gehlot P, Singh J, editors. Fungi and their role in sustainable sevelopment: surrent perspectives. Singapore: Springer; 2018. p. 449-65. https://doi.org/10.1007/978-981-13-0393-7_25
  6. Zajc J, Zalar P, Gunde-Cimerman N. Yeasts in hypersaline habitats. In: Buzzini P, Lachance M-A, Yurkov A, editors. Yeasts in natural ecosystems: diversity. Cham: Springer International Publishing; 2017. p. 293-329. https://doi.org/10.1007/978-3-319-62683-3_10
  7. Tamang JP, Watanabe K, Holzapfel WH. Review: Diversity of microorganisms in global fermented foods and beverages. Front Microbiol. 2016; 7:377. https://doi.org/10.3389/fmicb.2016.00377
  8. Hernández A, Pérez-Nevado F, Ruiz-Moyano S, Serradilla MJ, Villalobos MC, Martín A, et al. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int J Food Microbiol. 2018; 286:98-110. https://doi.org/10.1016/j.ijfoodmicro.2018.07.031
  9. Botta C, Cocolin L. Microbial dynamics and biodiversity in table olive fermentation: culture-dependent and -independent approaches. Front Microbiol. 2012; 3:245. https://doi.org/10.3389/fmicb.2012.00245
  10. Zhao L, Li Y, Jiang L, Deng F. Determination of fungal community diversity in fresh and traditional Chinese fermented pepper by pyrosequencing. FEMS Microbiol Lett. 2016; 363. https://doi.org/10.1093/femsle/fnw273
  11. Lavoie K, Touchette M, St-Gelais D, Labrie S. Characterization of the fungal microflora in raw milk and specialty cheeses of the province of Quebec. Dairy Sci Technol. 2012; 92(5):455-68. https://doi.org/10.1007/s13594-011-0051-4
  12. Hernández A, Martín A, Aranda E, Pérez-Nevado F, Córdoba MG. Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol. 2007; 24(4):346-51. https://doi.org/10.1016/j.fm.2006.07.022
  13. Tofalo R, Fusco V, Böhnlein C, Kabisch J, Logrieco AF, Habermann D, et al. The life and times of yeasts in traditional food fermentations. Crit Rev Food Sci Nutr. 2019; 26:1-30.
  14. Goerges S, Mounier J, Rea MC, Gelsomino R, Heise V, Beduhn R, et al. Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a south german red smear cheese. Appl Environ Microbiol. 2008; 74(7):2210-7. https://doi.org/10.1128/AEM.01663-07
  15. Cogan TM, Goerges S, Gelsomino R, Larpin S, Hohenegger M, Bora N, et al. Biodiversity of the Surface Microbial Consortia from Limburger, Reblochon, Livarot, Tilsit, and Gubbeen Cheeses. Microbiol Spectr. 2014; 2(1):CM-0010-2012. https://doi.org/10.1128/microbiolspec.CM-0010-2012
  16. Mounier J, Goerges S, Gelsomino R, Vancanneyt M, Vandemeulebroecke K, Hoste B, et al. Sources of the adventitious microflora of a smear-ripened cheese. J Appl Microbiol. 2006; 101(3):668-81. https://doi.org/10.1111/j.1365-2672.2006.02922.x
  17. Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido-Fernández A. Role of yeasts in table olive production. Int J Food Microbiol. 2008; 128(2):189-96. https://doi.org/10.1016/j.ijfoodmicro.2008.08.018
  18. Bonatsou S, Tassou C, Panagou E, Nychas G-J. Table olive fermentation using starter cultures with multifunctional potential. Microorganisms. 2017; 5:30. https://doi.org/10.3390/microorganisms5020030
  19. Rodriguez-Gómez F, Arroyo-López F, López-López A, Bautista-Gallego J, Garrido Fernández A. Lipolytic activity of the yeast species associated with the fermentation/storage phase of ripe olive processing. Food Microbiol. 2010; 27:604-12. https://doi.org/10.1016/j.fm.2010.02.003
  20. Bautista-Gallego J, Rodriguez-Gómez F, Barrio E, Querol A, Garrido Fernández A, Arroyo-López F. Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. Int J Food Microbiol. 2011; 147:89-96. https://doi.org/10.1016/j.ijfoodmicro.2011.03.013
  21. Abriouel H, El Bakali N, Lucas R, Gálvez A. Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Aloreña green table olives. Int J Food Microbiol. 2011; 144:487-96. https://doi.org/10.1016/j.ijfoodmicro.2010.11.006
  22. Marquina D, Peres C, Caldas FV, Marques JF, Peinado JM, Spencer‐Martins I. Characterization of the yeast population in olive brines. Lett Appl Microbiol. 1992; 14(6):279-83. https://doi.org/10.1111/j.1472-765X.1992.tb00705.x
  23. Silva T, Reto M, Sol M, Peito A, Peres C, Malcata F. Characterization of yeasts from Portuguese brined olives, with a focus on their potentially probiotic behavior. LWT - Food Sci Technol. 2011; 44:1349-54. https://doi.org/10.1016/j.lwt.2011.01.029
  24. Porru C, Rodríguez-Gómez F, Benítez-Cabello A, Jiménez-Díaz R, Zara G, Budroni M, et al. Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations. Food Microbiol. 2018; 69:33-42. https://doi.org/10.1016/j.fm.2017.07.010
  25. Tofalo R, Perpetuini G, Schirone M, Suzzi G, Corsetti A. Yeast biota associated to naturally fermented table olives from different Italian cultivars. Int J Food Microbiol. 2012; 161:203-8. https://doi.org/10.1016/j.ijfoodmicro.2012.12.011
  26. Sidari R, Martorana A, De Bruno A. Effect of brine composition on yeast biota associated with naturally fermented Nocellara messinese table olives. LWT. 2019; 109:163-70. https://doi.org/10.1016/j.lwt.2019.04.010
  27. Nisiotou AA, Chorianopoulos N, Nychas G-JE, Panagou EZ. Yeast heterogeneity during spontaneous fermentation of black Conservolea olives in different brine solutions. J Appl Microbiol. 2010; 108(2):396-405. https://doi.org/10.1111/j.1365-2672.2009.04424.x
  28. Bonatsou S, Paramithiotis S, Panagou EZ. Evolution of yeast consortia during the fermentation of Kalamata natural black olives upon two initial acidification treatments. Front Microbiol. 2018; 8:2673. https://doi.org/10.3389/fmicb.2017.02673
  29. Kotzekidou P. Identification of yeasts from black olives in rapid system microtitre plates. Food Microbiol. 1997; 14(6):609-16. https://doi.org/10.1006/fmic.1997.0133
  30. Leventdurur S, Sert-Aydın S, Boyaci-Gunduz CP, Agirman B, Ben Ghorbal A, Francesca N, et al. Yeast biota of naturally fermented black olives in different brines made from cv. Gemlik grown in various districts of the Cukurova region of Turkey. Yeast. 2016; 33(7):289-301. https://doi.org/10.1002/yea.3170
  31. Mujdeci G, Arévalo-Villena M, Ozbas ZY, Briones Pérez A. Yeast Identification During Fermentation of Turkish Gemlik Olives. J Food Sci. 2018; 83(5):1321-5. https://doi.org/10.1111/1750-3841.14124
  32. Bonatsou S, Tassou CC, Panagou EZ, Nychas G-JE. Table olive fermentation using starter cultures with multifunctional potential. Microorganisms. 2017; 5(2):30. https://doi.org/10.3390/microorganisms5020030
  33. Restuccia C, Muccilli S, Palmeri R, Randazzo CL, Caggia C, Spagna G. An alkaline β-glucosidase isolated from an olive brine strain of Wickerhamomyces anomalus. FEMS Yeast Res. 2011;11(6):487-93. https://doi.org/10.1111/j.1567-1364.2011.00738.x
  34. Rodríguez-Gómez F, Romero-Gil V, Bautista-Gallego J, Garrido-Fernández A, Arroyo-López FN. Multivariate analysis to discriminate yeast strains with technological applications in table olive processing. World J Microbiol Biotechnol. 2012; 28(4):1761-70. https://doi.org/10.1007/s11274-011-0990-1
  35. Papagora C, Roukas T, Kotzekidou P. Optimization of extracellular lipase production by Debaryomyces hansenii isolates from dry-salted olives using response surface methodology. Food Bioprod Process. 2013; 91:413-420. https://doi.org/10.1016/j.fbp.2013.02.008
  36. Bataiche I, Kacem-chaouche N, Destain J, Lejeune A, Thonart P. Screening of Candida boidinii from Chemlal spent olive characterized by higher alkaline-cold adapted lipase production. Afr J Biotechnol. 2014; 13(11):1287-1294. https://doi.org/10.5897/AJB2013.13586
  37. Psani M, Kotzekidou P. Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J Microbiol Biotechnol. 2006; 22(12):1329-36. https://doi.org/10.1007/s11274-006-9180-y
  38. Hernández A, Martín A, Córdoba MG, Benito MJ, Aranda E, Pérez-Nevado F. Determination of killer activity in yeasts isolated from the elaboration of seasoned green table olives. Int J Food Microbiol. 2008; 121(2):178-88. https://doi.org/10.1016/j.ijfoodmicro.2007.11.044
  39. Llorente P, Marquina D, Santos A, Peinado JM, Spencer-Martins I. Effect of salt on the killer phenotype of yeasts from olive brines. Appl Environ Microbiol. 1997; 63(3):1165-7. https://doi.org/10.1128/AEM.63.3.1165-1167.1997
  40. Bonatsou S, Karamouza M, Zoumpopoulou G, Mavrogonatou E, Kletsas D, Papadimitriou K, et al. Evaluating the probiotic potential and technological characteristics of yeasts implicated in cv. Kalamata natural black olive fermentation. Int J Food Microbiol. 2018; 271:48-59. https://doi.org/10.1016/j.ijfoodmicro.2018.02.018
  41. Tufariello M, Durante M, Ramires F, Grieco F, Tommasi L, Perbellini E, et al. New process for production of fermented black table olives using selected autochthonous microbial resources. Front Microbiol. 2015; 6:1007. https://doi.org/10.3389/fmicb.2015.01007
  42. De Angelis M, Campanella D, Cosmai L, Summo C, Rizzello CG, Caponio F. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiol. 2015; 52:18-30. https://doi.org/10.1016/j.fm.2015.06.002
  43. Tufariello M, Anglana C, Crupi P, Virtuosi I, Fiume P, Di Terlizzi B, et al. Efficacy of yeast starters to drive and improve Picual, Manzanilla and Kalamàta table olive fermentation. J Sci Food Agric. 2019; 99(5):2504-12. https://doi.org/10.1002/jsfa.9460
  44. Chytiri A, Tasioula‐Margari M, Bleve G, Kontogianni VG, Kallimanis A, Kontominas MG. Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamàta table olives considering phenol content, texture, and sensory attributes. J Sci Food Agr. 2020; 100(3):926-35. https://doi.org/10.1002/jsfa.10019
  45. Bevilacqua A, Beneduce L, Sinigaglia M, Corbo MR. Selection of yeasts as starter cultures for table olives. J Food Sci. 2013; 78(5):742-751. https://doi.org/10.1111/1750-3841.12117
  46. Tsapatsaris S, Kotzekidou P. Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. Int J Food Microbiol. 2004; 95(2):157-68. https://doi.org/10.1016/j.ijfoodmicro.2004.02.011
  47. Deak T. Handbook of food spoilage yeasts. Boca Raton, USA: CRC Press, 2007. 352 p. https://doi.org/10.1201/9781420044942
  48. Ianieva O. Tolerance of yeasts isolated from pickled cucumbers to stress factors. Mikrobiol Z. 2017; 79:34-45. https://doi.org/10.15407/microbiolj79.05.034
  49. Tang Y, Zhou X, Huang S, Li Y, Long M, Zhao X, et al. Microbial community analysis of different qualities of pickled radishes by Illumina MiSeq sequencing. J Food Saf. 2019; 39(2):e12596. https://doi.org/10.1111/jfs.12596
  50. González-Quijano GK, Dorantes-Alvarez L, Hernández-Sánchez H, Jaramillo-Flores ME, de Jesús Perea-Flores M, Vera-Ponce de León A, et al. Halotolerance and survival kinetics of lactic acid bacteria isolated from jalapeño pepper (Capsicum annuum L.) fermentation. J Food Sci. 2014; 79(8):1545-1553. https://doi.org/10.1111/1750-3841.12498
  51. Lara-Hidalgo CE, Dorantes-Álvarez L, Hernández-Sánchez H, Santoyo-Tepole F, Martínez-Torres A, Villa-Tanaca L, et al. Isolation of yeasts from guajillo pepper (Capsicum annuum l.) fermentation and study of some probiotic characteristics. Probiotics Antimicro Prot. 2019; 11(3):748-64. https://doi.org/10.1007/s12602-018-9415-x
  52. Chang H-W, Kim K-H, Nam Y-D, Roh SW, Kim M-S, Jeon C, et al. Analysis of yeast and archaeal population dynamics in Kimchi using denaturing gradient gel electrophoresis. Int J Food Microbiol. 2008; 126:159-66. https://doi.org/10.1016/j.ijfoodmicro.2008.05.013
  53. Lee KW, Shim JM, Kim DW, Yao Z, Kim JA, Kim H-J, et al. Effects of different types of salts on the growth of lactic acid bacteria and yeasts during kimchi fermentation. Food Sci Biotechnol. 2018; 27(2):489-98. https://doi.org/10.1007/s10068-016-0068-9
  54. Lee N-K, Hong J-Y, Yi S-H, Hong S-P, Lee J-E, Paik H-D. Bioactive compounds of probiotic Saccharomyces cerevisiae strains isolated from Cucumber jangajji. J Functional Foods. 2019; 58:324-9. https://doi.org/10.1016/j.jff.2019.04.059
  55. Jeong S, Lee SH, Jin HM, Jeon C. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi. Int J Food Microbiol. 2013; 164:46-53. https://doi.org/10.1016/j.ijfoodmicro.2013.03.016
  56. Panghal A, Janghu S, Virkar K, Gat Y, Kumar V, Chhikara N. Potential non-dairy probiotic products - A healthy approach. Food Biosci. 2018; 21:80-9. https://doi.org/10.1016/j.fbio.2017.12.003
  57. Lee M-E, Jang J-Y, Lee J-H, Park H-W, Choi H-J, Kim T-W. Starter cultures for kimchi fermentation. J Microbiol Biotechnol. 2015; 25(5):559-68. https://doi.org/10.4014/jmb.1501.01019
  58. Mo E-K, Ly S-Y, JeGal S-A, Sung C-K. Effects of addition of Pichia anomala SKM-T and Galactomyces geotrichum SJM-59 on baechu kimchi fermentation. Korean J Food Preserv. 2007; 14(1):94-9.
  59. Kim Y-C, Jung E-Y, Kim H-J, Jung D-H, Hong S-G, Kwon T-J, et al. Improvement of kimchi fermentation by using acid-tolerant mutant of Leuconostoc mesenteroides and aromatic yeast Saccharomyces fermentati as starters. J Microbiol Biotechnol. 1999; 9:22-31.
  60. Tamang J. Diversity of Fermented Foods. In: Fermented foods and beverages of the world. CRC Press; 2010. p. 41-84. https://doi.org/10.1201/EBK1420094954-c2
  61. Paškevičius A, Varnaite R. Yeast occurrence in herring products and processing environment and their biochemical peculiarities. Pol J Food Nutr Sci. 2010; 60:369-73.
  62. Dąbrowski W., Różycka-Kasztelan K., Czeszejko K., Mędrala D. Microflora of lawsalt herring. The influence of sodium benzoate on microflora of low-salt herring. Electr J Po Agric Univ. 2002; 5(2):14.
  63. Ianieva O, Ogirchuk KS. Yeasts associated with salted herring and brine, Ukraine. Mikrobiol Z. 2018; 80(2):80-91. https://doi.org/10.15407/microbiolj80.02.080
  64. Thapa N, Pal J, Tamang JP. Microbial diversity in ngari, hentak and tungtap, fermented fish products of north-east India. World J Microbiol Biotechnol. 2004; 20(6):599. https://doi.org/10.1023/B:WIBI.0000043171.91027.7e
  65. Roh SW, Kim K-H, Nam Y-D, Chang H-W, Park E-J, Bae J-W. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. The ISME Journal. 2010; 4(1):1-16. https://doi.org/10.1038/ismej.2009.83
  66. Paludan-Müller C, Madsen M, Sophanodora P, Gram L, Møller PL. Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations. Int J Food Microbiol. 2002; 73(1):61-70. https://doi.org/10.1016/S0168-1605(01)00688-2
  67. Mendoza LM, Padilla B, Belloch C, Vignolo G. Diversity and enzymatic profile of yeasts isolated from traditional llama meat sausages from north-western Andean region of Argentina. Food Res Int. 2014; 62:572-9. https://doi.org/10.1016/j.foodres.2014.04.008
  68. Murgia MA, Marongiu A, Aponte M, Blaiotta G, Deiana P, Mangia NP. Impact of a selected Debaryomyces hansenii strain's inoculation on the quality of Sardinian fermented sausages. Food Res Int. 2019; 121:144-50. https://doi.org/10.1016/j.foodres.2019.03.042
  69. Mendonça RCS, Gouvêa DM, Hungaro HM, Sodré A de F, Querol-Simon A. Dynamics of the yeast flora in artisanal country style and industrial dry cured sausage (yeast in fermented sausage). Food Control. 2013; 29(1):143-8. https://doi.org/10.1016/j.foodcont.2012.05.057
  70. Baruzzi F, Matarante A, Caputo L, Morea M. Molecular and physiological characterization of natural microbial communities isolated from a traditional Southern Italian processed sausage. Meat Sci. 2006; 72(2):261-9. https://doi.org/10.1016/j.meatsci.2005.07.013
  71. Flores M, Corral S, Cano-García L, Salvador A, Belloch C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int J Food Microbiol. 2015; 212:16-24. https://doi.org/10.1016/j.ijfoodmicro.2015.02.028
  72. Corral S, Belloch C, López-Díez JJ, Salvador A, Flores M. Yeast inoculation as a strategy to improve the physico-chemical and sensory properties of reduced salt fermented sausages produced with entire male fat. Meat Sci. 2017; 123:1-7. https://doi.org/10.1016/j.meatsci.2016.08.007
  73. Andrade M, Córdoba J, Casado E, Córdoba M, Rodríguez M. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage "salchichón". Meat Sci. 2010; 85:256-64. https://doi.org/10.1016/j.meatsci.2010.01.009
  74. Núñez F, Lara MS, Peromingo B, Delgado J, Sánchez-Montero L, Andrade MJ. Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food Microbiol. 2015; 46:114-20. https://doi.org/10.1016/j.fm.2014.07.019
  75. Andrade MJ, Thorsen L, Rodríguez A, Córdoba JJ, Jespersen L. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products. Int J Food Microbiol. 2014; 170:70-7. https://doi.org/10.1016/j.ijfoodmicro.2013.11.004
  76. Virgili R, Simoncini N, Toscani T, Camardo Leggieri M, Formenti S, Battilani P. Biocontrol of Penicillium nordicum growth and ochratoxin A production by native yeasts of dry cured ham. Toxins. 2012; 4(2):68-82. https://doi.org/10.3390/toxins4020068
  77. Iucci L, Patrignani F, Belletti N, Ndagijimana M, Elisabetta Guerzoni M, Gardini F, et al. Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 2: Evaluation of their effects on sensory quality and biogenic amine content. Meat Science. 2007; 75(4):669-75. https://doi.org/10.1016/j.meatsci.2006.09.016
  78. Selgas MD, Ros J, García ML. Effect of selected yeast strains on the sensory properties of dry ferfermented sausages. Eur Food Res Technol. 2003; 217(6):475-80. https://doi.org/10.1007/s00217-003-0778-0
  79. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitas A. Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol. 2000; 32(3):235-40. https://doi.org/10.1111/j.1574-6941.2000.tb00716.x
  80. Tekolo OM, McKenzie J, Botha A, Prior BA. The osmotic stress tolerance of basidiomycetous yeasts. FEMS Yeast Res. 2010; 10(4):482-91. https://doi.org/10.1111/j.1567-1364.2010.00612.x
  81. Golomb BL, Morales V, Jung A, Yau B, Boundy-Mills KL, Marco ML. Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiol. 2013; 33(1):97-106. https://doi.org/10.1016/j.fm.2012.09.004
  82. Bautista-Gallego J, Arroyo-López FN, Romero-Gil V, Rodríguez-Gómez F, García-García P, Garrido-Fernández A. Microbial stability and quality of seasoned cracked green Aloreña table olives packed in diverse chloride salt mixtures. J Food Prot. 2013; 76(11):1923-32. https://doi.org/10.4315/0362-028X.JFP-12-504
  83. de Castro A, Sánchez AH, López-López A, Cortés-Delgado A, Medina E, Montaño A. Microbiota and Metabolite Profiling of Spoiled Spanish-Style Green Table Olives. Metabolites. 2018; 8(4). https://doi.org/10.3390/metabo8040073
  84. Savard T, Beaulieu C, Gardner N, Champagne C. Characterization of spoilage yeasts isolated from fermented vegetables and Inhibition by lactic, acetic and propionic acids. Food Microbiol. 2002; 19:363-73. https://doi.org/10.1006/fmic.2002.0483
  85. Franco W, Pérez-Díaz IM, Johanningsmeier SD, McFeeters RF. Characteristics of spoilage-sssociated secondary cucumber fermentation. Appl Environ Microbiol. 2012; 78(4):1273-84. https://doi.org/10.1128/AEM.06605-11
  86. Moon SH, Chang M, Kim HY, Chang HC. Pichia kudriavzevii is the major yeast involved in film-formation, off-odor production, and texture-softening in over-ripened Kimchi. Food Sci Biotechnol. 2014; 23(2):489-97.https://doi.org/10.1007/s10068-014-0067-7
  87. Suzuki A, Muraoka N, Nakamura M, Yanagisawa Y, Amachi S. Identification of undesirable white-colony-forming yeasts appeared on the surface of Japanese kimchi. Biosci Biotech Bioch. 2018; 82(2):334-42. https://doi.org/10.1080/09168451.2017.1419853
  88. Zhang F, Tang Y, Ren Y, Yao K, He Q, Wan Y, et al. Microbial composition of spoiled industrial-scale Sichuan paocai and characteristics of the microorganisms responsible for paocai spoilage. Int J Food Microbiol. 2018; 275:32-8. https://doi.org/10.1016/j.ijfoodmicro.2018.04.002
  89. Ao X, Yan J, Chen C, Zhao J, Liu S, Zhao K, et al. Isolation and identification of the spoilage microorganisms in Sichuan homemade Paocai and their impact on quality and safety. Food Sci Nutr. 2019; 7(9):2939-47. https://doi.org/10.1002/fsn3.1148
  90. Kim JY, Kim J, Cha I-T, Jung MY, Song HS, Kim YB, et al. Community structures and genomic features of undesirable white colony-forming yeasts on fermented vegetables. J Microbiol. 2019; 57(1):30-7. https://doi.org/10.1007/s12275-019-8487-y
  91. Nielsen DS, Jacobsen T, Jespersen L, Koch AG, Arneborg N. Occurrence and growth of yeasts in processed meat products - Implications for potential spoilage. Meat Sci. 2008; 80(3):919-26. https://doi.org/10.1016/j.meatsci.2008.04.011
  92. Brocklehurst TF, Lund BM. Microbiological changes in mayonnaise-based salads during storage. Food Microbiol. 1984; 1(1):5-12. https://doi.org/10.1016/0740-0020(84)90004-2
  93. Baleiras Couto MM, Hartog BJ, Huis in't Veld JHJ, Hofstra H, van der Vossen JMBM. Identification of spoilage yeasts in a food-production chain by microsatellite polymerase chain reaction fingerprinting. Food Microbiol. 1996; 13(1):59-67. https://doi.org/10.1006/fmic.1996.0008
  94. Waite JG, Jones JM, Yousef AE. Isolation and identification of spoilage microorganisms using food-based media combined with rDNA sequencing: Ranch dressing as a model food. Food Microbiol. 2009; 26(3):235-9. https://doi.org/10.1016/j.fm.2009.01.001
  95. Westall S, Filtenborg O. Spoilage yeasts of decorated soft cheese packed in modified atmosphere. Food Microbiology. 1998 Apr 1; 15(2):243-9. https://doi.org/10.1006/fmic.1997.0162
  96. Yalcin HT, Ucar FB. Isolation and characterization of cheese spoiler yeast isolated from Turkish white cheeses. Ann Microbiol. 2009; 59(3):477-83. https://doi.org/10.1007/BF03175134
  97. Garnier L, Valence F, Pawtowski A, Auhustsinava-Galerne L, Frotté N, Baroncelli R, et al. Diversity of spoilage fungi associated with various French dairy products. Int J Food Microbiol. 2017; 241:191-7. https://doi.org/10.1016/j.ijfoodmicro.2016.10.026
  98. Ross H, Harden T, Nichol A, Deeth H. Isolation and investigation of micro-organisms causing brown defects in mould-ripened cheeses. Aust J Dairy Technol. 2000; 55:5-8.
  99. Arroyo-López FN, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García-García P, et al. Yeasts in table olive processing: desirable or spoilage microorganisms? Int J Food Microbiol. 2012; 160(1):42-9. https://doi.org/10.1016/j.ijfoodmicro.2012.08.003
  100. Raghukumar S. Fungi in Coastal and Oceanic Marine Ecosystems: Marine Fungi. Springer, Cham; 2017. https://doi.org/10.1007/978-3-319-54304-8
  101. Jones EBG, Pang K-L, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, et al. An online resource for marine fungi. Fungal Divers. 2019; 96(1):347-433. https://doi.org/10.1007/s13225-019-00426-5
  102. Nagahama T. Yeast Biodiversity in Freshwater, Marine and Deep-Sea Environments. In Biodiversity and Ecophysiology of Yeasts, The Yeast Handbook. Berlin Heidelberg: Springer, 2006. p. 241-62. https://doi.org/10.1007/3-540-30985-3_12
  103. Fotedar R, Kolecka A, Boekhout T, Fell J, Anand A, Malaki A, et al. Naganishia qatarensis sp. nov., a novel basidiomycetous yeast species from a hypersaline marine environment in Qatar. Int J Syst Evol Microbiol. 2018; 68(9):2924-9. https://doi.org/10.1099/ijsem.0.002920
  104. Fotedar R, Kolecka A, Boekhout T, Fell JW, Zeyara A, Al Malki A, et al. Kondoa qatarensis f.a., sp. nov., a novel yeast species isolated from marine water in Qatar. Int J Syst Evol Microbiol. 2019; 69(2):486-92. https://doi.org/10.1099/ijsem.0.003182
  105. Nagahama T, Hamamoto M, Horikoshi K. Rhodotorula pacifica sp. nov., a novel yeast species from sediment collected on the deep-sea floor of the north-west Pacific Ocean. Int J Syst Evol Microbiol. 2006; 56(Pt 1):295-9. https://doi.org/10.1099/ijs.0.63584-0
  106. Burgaud G, Arzur D, Sampaio J, Barbier G. Candida oceani sp. nov., a novel yeast isolated from a Mid-Atlantic Ridge hydrothermal vent (− 2300 meters). Antonie van Leeuwenhoek. 2011; 100:75-82. https://doi.org/10.1007/s10482-011-9566-1
  107. Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, et al. Yeast forms dominate fungal diversity in the deep oceans. Proc Biol Sci. 2007; 274(1629):3069-77. https://doi.org/10.1098/rspb.2007.1067
  108. Kutty SN, Philip R. Marine yeasts-a review. Yeast. 2008; 25(7):465-83. https://doi.org/10.1002/yea.1599
  109. Richards TA, Leonard G, Mahé F, del Campo J, Romac S, Jones MDM, et al. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc Roy Soc B-Biol Sci. 2015; 282(1819):20152243. https://doi.org/10.1098/rspb.2015.2243
  110. Chi Z-M, Liu G, Zhao S, Li J, Peng Y. Marine yeasts as biocontrol agents and producers of bio-products. Appl Microbiol Biotechnol. 2010; 86(5):1227-41. https://doi.org/10.1007/s00253-010-2483-9
  111. Zaky AS, Tucker GA, Daw ZY, Du C. Marine yeast isolation and industrial application. FEMS Yeast Res. 2014; 14(6):813-25. https://doi.org/10.1111/1567-1364.12158
  112. Sheng J, Chi Z, Li J, Gao L, Gong F. Inulinase production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinase. Process Biochem. 2007; 42:805-11. https://doi.org/10.1016/j.procbio.2007.01.016
  113. Gao L, Chi Z, Sheng J, Wang L, Li J, Gong F. Inulinase-producing marine yeasts: evaluation of their diversity and inulin hydrolysis by their crude enzymes. Microb Ecol. 2007; 54:722-9. https://doi.org/10.1007/s00248-007-9231-4
  114. Li J, Chi Z, Wang X, Peng Y, Chi Z. The selection of alkaline protease-producing yeasts from marine environments and evaluation of their bioactive peptide production. Chin J Oceanol Limn. 2009; 27:753-61. https://doi.org/10.1007/s00343-009-9198-8
  115. Gong F, Sheng J, Chi Z, Li J. Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. J Ind Microbiol Biotechnol. 2007; 34(3):179-85. https://doi.org/10.1007/s10295-006-0184-2
  116. Li J, Peng Y, Wang X, Chi Z. Optimum production and characterization of an acid protease from marine yeast Metschnikowia reukaufii W6. J Ocean Univ China. 2010; 9:359-64. https://doi.org/10.1007/s11802-010-1765-2
  117. Duarte AWF, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LCS, Pessoa A, et al. Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles. 2013; 17(6):1023-35. https://doi.org/10.1007/s00792-013-0584-y
  118. Chaud LCS, Lario LD, Bonugli-Santos RC, Sette LD, Pessoa Junior A, Felipe M das G de A. Improvement in extracellular protease production by the marine antarctic yeast Rhodotorula mucilaginosa L7. N Biotechnol. 2016; 33(6):807-14. https://doi.org/10.1016/j.nbt.2016.07.016
  119. Li H, Chi Z, Duan X, Wang L, Sheng J, Wu LF. Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Process Biochem. 2007; 42:462-5. https://doi.org/10.1016/j.procbio.2006.09.012
  120. Li X, Chi Z, Liu Z, Yan K, Li H. Phytase production by a marine yeast Kodamea ohmeri BG3. Appl Biochem Biotechnol. 2008; 149(2):183-93. https://doi.org/10.1007/s12010-007-8099-6
  121. Wu S-J, Chen J. Preparation of maltotriose from fermentation broth by hydrolysis of pullulan using pullulanase. Carbohydr Polym. 2014; 107:94-97. https://doi.org/10.1016/j.carbpol.2014.02.050
  122. Zaky A, Greetham D, Tucker G, Du C. The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain. Sci Rep. 2018; 8:121-27. https://doi.org/10.1038/s41598-018-30660-x
  123. Khambhaty Y, Upadhyay D, Kriplani Y, Joshi N, Mody K, Gandhi M. Bioethanol from macroalgal biomass: utilization of marine yeast for production of the same. Bioenerg Res. 2012; 6(1):188-95. https://doi.org/10.1007/s12155-012-9249-4
  124. Kandasamy K, Saravanakumar K. Bio-ethanol production by marine yeasts isolated from coastal mangrove sediment. IRMJ-Biotechnology. 2011; 1:19-24.
  125. Sudhakar MP, Jegatheesan A, Poonam C, Perumal K, Arunkumar, K. Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast. Renew Energy. 2016; 105:133-39. https://doi.org/10.1016/j.renene.2016.12.055
  126. Wang Q, Cui Y, Sen B, Ma W, Zheng RL, Liu X, et al. Characterization and robust nature of newly isolated oleaginous marine yeast Rhodosporidium spp. from coastal water of Northern China. AMB Express. 2017; 7:30. https://doi.org/10.1186/s13568-017-0329-x
  127. Dobrowolski A, Drzymała K, Rzechonek DA., Mituła P, Mirończuk AM. Lipid production from waste materials in seawater-based medium by the yeast Yarrowia lipolytica. Front Microbiol. 2019; 10:547. https://doi.org/10.3389/fmicb.2019.00547
  128. Yen H-W, Liao Y-T, Liu YX. Cultivation of oleaginous Rhodotorula mucilaginosa in airlift bioreactor by using seawater. J Biosci Bioeng. 2016; 121(2):209-12. https://doi.org/10.1016/j.jbiosc.2015.06.007
  129. Wang X, Chi Z, Yue L, Li J. Purification and characterization of killer toxin from a marine yeast Pichia anomala YF07b against the pathogenic yeast in crab. Curr Microbiol. 2007; 55(5):396-401. https://doi.org/10.1007/s00284-007-9010-y
  130. Hua M-X, Chi Z, Liu G-L, Buzdar MA, Chi Z-M. Production of a novel and cold-active killer toxin by Mrakia frigida 2E00797 isolated from sea sediment in Antarctica. Extremophiles. 2010; 14(6):515-21. https://doi.org/10.1007/s00792-010-0331-6
  131. Wang X-X, Chi Z, Peng Y, Wang X-H, Ru S-G, Chi Z-M. Purification, characterization and gene cloning of the killer toxin produced by the marine-derived yeast Williopsis saturnus WC91-2. Microbiol Res. 2012; 167(9):558-63. https://doi.org/10.1016/j.micres.2011.12.001
  132. Shetaia Y, Khalik W, Mohamed T, Farahat L, ElMekawy A. Potential biodegradation of crude petroleum oil by newly isolated halotolerant microbial strains from polluted Red Sea area. Mar Pollut Bull. 2016; 111(1-2):435-42. https://doi.org/10.1016/j.marpolbul.2016.02.035
  133. Farag S, Soliman NA. Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain. Braz Arch Biol Technol. 2011; 54:821-830. https://doi.org/10.1590/S1516-89132011000400023
  134. Lefebvre O, Moletta R. Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res. 2006; 40(20):3671-82. https://doi.org/10.1016/j.watres.2006.08.027
  135. Tan L, He M, Song L, Fu X, Shi S. Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Biores Technol. 2016; 203:287-94. https://doi.org/10.1016/j.biortech.2015.12.058
  136. Tan L, Xu B, Hao J, Wang J, Shao Y, Mu G. Biodegradation and Detoxification of azo dyes by a newly isolated halotolerant yeast Candida tropicalis SYF-1. Envir Eng Sci. 2019; 36(9):999-1010. https://doi.org/10.1089/ees.2018.0485
  137. Song L, Shao Y, Ning S, Tan L. Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes. Biores Technol. 2017; 233:21-9. https://doi.org/10.1016/j.biortech.2017.02.065
  138. Song Z, Song L, Shao Y, Liang T. Degradation and detoxification of azo dyes by a salt-tolerant yeast Cyberlindnera samutprakarnensis S4 under high-salt conditions. World J Microb Biot. 2018; 34(9):131. https://doi.org/10.1007/s11274-018-2515-7
  139. Guo G, Tian F, Zhao Y, Tang M, Liu W, Liu C, et al. Aerobic decolorization and detoxification of Acid Scarlet GR by a newly isolated salt-tolerant yeast strain Galactomyces geotrichum GG. Int Biodeter Biodegr. 2019; 145:104818. https://doi.org/10.1016/j.ibiod.2019.104818
  140. Navarrete, P, Tovar-Ramírez D. Use of yeasts as probiotics in fish aquaculture. In: Sustainable Aquaculture Techniques. 2014. p. 135-172. https://doi.org/10.5772/57196
  141. Tapia Paniagua ST, Reyes-Becerril M, Ascencio F, Esteban M, Clavijo E, Balebona M. Modulation of the intestinal microbiota and immune system of farmed Sparus aurata by the administration of the yeast Debaryomyces hansenii L2 in conjunction with inulin. J Aquac Res Development. 2011; S1:012. https://doi.org/10.4172/2155-9546.S1-012
  142. Angulo M, Reyes-Becerril M, Cepeda-Palacios R, Tovar-Ramírez D, Esteban MÁ, Angulo C. Probiotic effects of marine Debaryomyces hansenii CBS 8339 on innate immune and antioxidant parameters in newborn goats. Appl Microbiol Biotechnol. 2019; 103(5):2339-52. https://doi.org/10.1007/s00253-019-09621-5
  143. Sajeevan TP, Philip R, Singh ISB. Immunostimulatory effect of a marine yeast Candida sake S165 in Fenneropenaeus indicus. Aquaculture. 2006; 257(1):150-5. https://doi.org/10.1016/j.aquaculture.2006.03.008
  144. Yang S-P, Wu Z-H, Jian J-C, Zhang X-Z. Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei. Aquaculture (Amst). 2010; 309(1-4):62-5. https://doi.org/10.1016/j.aquaculture.2010.09.032
  145. Babu DT, Antony SP, Joseph SP, Bright AR, Philip R. Marine yeast Candida aquaetextoris S527 as a potential immunostimulant in black tiger shrimp Penaeus monodon. J Invertebr Pathol. 2013; 112(3):243-52. https://doi.org/10.1016/j.jip.2012.12.002
  146. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N. Yeast diversity in hypersaline habitats. FEMS Microbiol Lett. 2005; 244(2):229-34. https://doi.org/10.1016/j.femsle.2005.01.043
  147. Rani MHS, Kalaiselvam M. Diversity of halophilic mycoflora habitat in saltpans of Tuticorin and Marakkanam along southeast coast of India. Int J Micro Myco. 2018; 7(1):1-17.
  148. Borruso L, Sannino C, Selbmann L, Battistel D, Zucconi L, Azzaro di Rosamarina M, et al. A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land). Sci Rep. 2018; 8:6582. https://doi.org/10.1038/s41598-018-25079-3
  149. Moubasher A-AH, Abdel-Sater MA, Soliman ZSM. Diversity of yeasts and filamentous fungi in mud from hypersaline and freshwater bodies in Egypt. Czech Mycol. 2018; 26(70):1-32. https://doi.org/10.33585/cmy.70101
  150. Fotedar R, Kolecka A, Boekhout T, Fell JW, Al-Malki A, Zeyara A, Marri MA. Fungal diversity of the hypersaline Inland Sea in Qatar. Botanica Mar. 2018; 61 (6):595-609. https://doi.org/10.1515/bot-2018-0048
  151. Mokhtarnejad L, Arzanlou M, Babai-Ahari A. Molecular and phenotypic characterization of ascomycetous yeasts in hypersaline soils of Urmia Lake basin (NW Iran). Rostaniha. 2015; 16:174-85.
  152. Mokhtarnejad L, Arzanlou M, Babai-Ahari A, Di Mauro S, Onofri A, Buzzini P, et al. Characterization of basidiomycetous yeasts in hypersaline soils of the Urmia Lake National Park, Iran. Extremophiles. 2016; 20(6):915-28. https://doi.org/10.1007/s00792-016-0883-1
  153. Evans S, Hansen RW, Schneegurt MA. Isolation and Characterization of Halotolerant Soil Fungi from the Great Salt Plains of Oklahoma. Cryptogamie Mycol. 2013; 34(4):329-41. https://doi.org/10.7872/crym.v34.iss4.2013.329
  154. Marchetta A, Gerrits van den Ende B, Al-Hatmi AMS, Hagen F, Zalar P, Sudhadham M, et al. Global molecular diversity of the halotolerant fungus Hortaea werneckii. Life (Basel). 2018; 8(3). https://doi.org/10.3390/life8030031
  155. Ali I, Kanhayuwa L, Rachdawong S, Rakshit S. Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province, Thailand. Ann Microbiol. 2012; 63:887-95. https://doi.org/10.1007/s13213-012-0540-6
  156. Steiman R, Guiraud P, Sage L, Seigle-Murandi F. Soil mycoflora from the Dead Sea Oases of Ein Gedi and Einot Zuqim (Israel). Antonie Van Leeuwenhoek. 1997; 72(3):261-70. https://doi.org/10.1023/A:1000441705073
  157. Steiman R, Ford L, Ducros V, Lafond J-L, Guiraud P. First survey of fungi in hypersaline soil and water of Mono Lake area (California). Antonie Van Leeuwenhoek. 2004; 85(1):69-83. https://doi.org/10.1023/B:ANTO.0000020150.91058.4d
  158. Finkel O, Burch A, Lindow S, Post A, Belkin S. Finkel OM, Burch AY, Lindow SE, Post AF, Belkin S. Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol. 2011; 77(21):7647-55. https://doi.org/10.1128/AEM.05565-11
  159. Van Ryckegem G, Gessner MO, Verbeken A. Fungi on leaf blades of Phragmites australis in a brackish tidal marsh: diversity, succession and leaf decomposition. Microb Ecol. 2007; 53(4):600-11. https://doi.org/10.1007/s00248-006-9132-y
  160. Furtado B, Szymańska S, Hrynkiewicz K. A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents. Plant Soil. 2019; 445:577-94. https://doi.org/10.1007/s11104-019-04315-3
  161. Chamekh R, Deniel F, Donot C, Jany J-L, Nodet P, Belabid L. Isolation, Identification and Enzymatic Activity of Halotolerant and Halophilic Fungi from the Great Sebkha of Oran in Northwestern of Algeria. Mycobiology. 2019; 47(2):230-41. https://doi.org/10.1080/12298093.2019.1623979
  162. Reyes-Becerril M, Guluarte C, Ceballos-Francisco D, Angulo C, Esteban MÁ. Dietary yeast Sterigmatomyces halophilus enhances mucosal immunity of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2017; 64:165-75. https://doi.org/10.1016/j.fsi.2017.03.027
  163. Crognale S, Pesciaroli L, Petruccioli M, D'Annibale A. Phenoloxidase-producing halotolerant fungi from olive brine wastewater. Process biochem. 2012; 47:1433-7. https://doi.org/10.1016/j.procbio.2012.05.014
  164. Papadelli M, Ntougias S. Microbial community structure and disposal issues of table olive wastewaters generated from the fermentation of the olive cultivar 'Kalamon'. Ann Microbiol. 2014; 64:1483-92. https://doi.org/10.1007/s13213-013-0791-x
  165. Rincón-Llorente B, De la Lama-Calvente D, Fernández-odríguez MJ, Borja-Padilla R. Table olive wastewater: problem, treatments and future strategy. A review. Front Microbiol. 2018; 9:1641. https://doi.org/10.3389/fmicb.2018.01641
  166. Yang Q, Angly F, Wang Z, Zhang H. Wastewater treatment systems harbor specific and diverse yeast communities. Biochem Eng J. 2011; 58:168-76. https://doi.org/10.1016/j.bej.2011.09.012
  167. Jarboui R, Baati H, Fetoui F, Gharsallah N, Ammar E. Yeast performance in wastewater treatment: Case study of Rhodotorula mucilaginosa. Envir Technol. 2012; 33:951-60. https://doi.org/10.1080/09593330.2011.603753
  168. Gonçalves C, Lopes M, Ferreira J, Belo I. Biological treatment of olive mill wastewater by non-conventional yeasts. Biores Technol. 2009; 100:3759-63. https://doi.org/10.1016/j.biortech.2009.01.004
  169. Ayed L, Asses N, Chammem N, Hamdi M. Improvement of green table olive processing wastewater decolorization by Geotrichum candidum. Desalin Water Treat. 2015; 57(37):17322-32.
  170. Tigini V, Prigione V, Varese GC. Mycological and ecotoxicological characterisation of landfill leachate before and after traditional treatments. Sci Total Environ. 2014; 487:335-41. https://doi.org/10.1016/j.scitotenv.2014.04.026
  171. Lahav R, Fareleira P, Nejidat A, Abeliovich A. The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microb Ecol. 2002; 43(3):388-96. https://doi.org/10.1007/s00248-002-2001-4
  172. Jiang Y, Shang Y, Yang K, Wang H. Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals. Appl Microbiol Biotechnol. 2016; 100(4):1883-90. https://doi.org/10.1007/s00253-015-7180-2
  173. Rocha LL, de Aguiar Cordeiro R, Cavalcante RM, do Nascimento RF, Martins SCS, Santaella ST, et al. Isolation and characterization of phenol-degrading yeasts from an oil refinery wastewater in Brazil. Mycopathologia. 2007;164(4):183-8. https://doi.org/10.1007/s11046-007-9043-6
  174. Jiang Y, Deng T, Shang Y, Yang K, Wang H. Biodegradation of phenol by entrapped cell of Debaryomyces sp. with nano-Fe3O4 under hypersaline conditions. Int Biodeter Biodegr. 2017; 123:37-45. https://doi.org/10.1016/j.ibiod.2017.05.029
  175. Zajc J, Zalar P, Plemenitaš A, Gunde-Cimerman N. The Mycobiota of the Salterns. In: Biology of Marine Fungi. Berlin, Heidelberg: Springer; 2012. p. 133-58. https://doi.org/10.1007/978-3-642-23342-5_7
  176. Kejžar A, Gobec S, Plemenitaš A, Lenassi M. Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment. Fungal Biol. 2013; 117(5):368-79. https://doi.org/10.1016/j.funbio.2013.03.006