Mikrobiol. Z. 2020; 82(3):14-21.
doi: https://doi.org/10.15407/microbiolj82.03.014

Characteristics of Genome of Bacillus velezensis ONU 553 Strain Isolated from
the Bottom Sediments of the Black Sea

M.D. Shtenikov1, A.M. Ostapchuk1, N.Y. Vasylieva1, A.M. Luzhetskyy2,
C. Rückert2, J. Kalinowski2, V.О. Ivanytsia1

1Odessa Mechnikov National University
2 Dvoryanska Str., Odessa, 65000, Ukraine

2Helmholtz Institute for Pharmaceutical Research Saarland
Campus E8 1, Saarbrücken, 66123, Germany

The search for producers of biologically active metabolites is shifting towards the study of strains from exotic biotopes. Aerobic spore-forming bacteria from the Black Sea bottom sediments are a good example of such microorganisms due to the simplicity of selective isolation, culture maintenance, and high biosynthetic activity. Aim. To analyze the genome structure of Bacillus sp. ONU 553 bacterial strain, isolated from bottom sediments of the Black Sea, for its reidentification and to find genes responsible for the synthesis of biologically active compounds. Methods. The obtained genomic DNA was sequenced using НiSeq 1500 equipment (Illumina). Genome assembly was performed with a Newbler 2.8 assembler, species identification with a TYGS server, for ANI calculation Ezbiocloud was used. Genome annotation was done using a PATRIC and NCBI PGAP servers, search for biosynthetic gene clusters of antibiotics and bacteriocins using antiSMASH and Bagel4 respectively. Search for pathogenicity determinant was conducted using IslandViewer, for antibiotic resistance ResFinder-3.2, prophage elements search with PHASTER. Results. Established that the size of the studied genome of Bacillus sp. ONU 553 is 3 934 563 bp, the mean GC content is 46.69%. 3 953 open reading frames were revealed, 3 252 of them, i.e. 82% are identified. Determinants of six antibiotics and two bacteriocins and also four prophage-like elements were found. Conclusions. The conducted studies and comparative analysis of Bacillus sp. ONU 553 strain genome, which was isolated from the Black Sea bottom sediments gives us reasons to reidentify it as Bacillus velezensis and make perspective it’s further study as potential probiotic and source of new biologically active compounds.

Keywords: Bacillus velezensis, genome annotation, marine bacteria, bottom sediments, the Black Sea, bacteriocins, antimicrobial compounds.

Full text (PDF, in English)

  1. Schinke C, Martins T, Queiroz SCN, Melo IS, Reyes FGR. Antibacterial Compounds from Marine Bacteria, 2010–2015. J Nat Prod. 2017; 80(4):1215–1228. https://doi.org/10.1021/acs.jnatprod.6b00235
  2. Logan NA, De Vos P. Bacillus. In: Bergey’s Manual of Systematics of Archaea and Bacteria. Whitman WB. John Wiley & Sons, editors. Inc, 2015:1–164. https://doi.org/10.1002/9781118960608.gbm00530
  3. Fan B, Blom J, Klenk H.-P, Borriss R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex. Front Microbiol. 2017; (8):1–15. https://doi.org/10.3389/fmicb.2017.00022
  4. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, et al. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Front Microbiol. 2018; 162(9):1–7. https://doi.org/10.3389/fmicb.2018.02491
  5. Ma Z, Hu J. Complete genome sequence of a marine-sediment-derived bacterial strain Bacillus velezensis SH-B74, a cyclic lipopeptides producer and a biopesticide. Biotech. 2019; 162(9):1–7. https://doi.org/10.1007/s13205-019-1694-8
  6. Zhao P, Xue Y, Gao W, Li J, Zu X, Fu D, et al. Bacillaceae-derived peptide antibiotics since 2000. Peptides. 2018; 101:10–16. https://doi.org/10.1016/j.peptides.2017.12.018
  7. Saggese A, Culurciello R, Casillo A, Corsaro MM, Ricca E, Baccigalupi L. A Marine Isolate of Bacillus pumilus Secretes a Pumilacidin Active against Staphylococcus aureus. Mar Drugs. 2018; 16(6):1–13. https://doi.org/10.3390/md16060180
  8. Zhang DJ, Liu RF, Li YG, Tao LM, Tian L. Two new antifungal cyclic lipopeptides from Bacillus marinus B-9987.Chem Pharm Bull. 2010; 58(12):1630–34. https://doi.org/10.1248/cpb.58.1630
  9. Shtenikov MD, Ostapchuk AM, Ivanytsia VO. Antagonistic activity of endosporeforming bacteria of deep water the Black Sea sediments. Microbiology & Biotechnology. 2018; 43(3):82–89. https://doi.org/10.18524/2307-4663.2018.3(43).142582
  10. Ivanytsia VO, Shtenikov MD, Ostapchuk AM. [Facultatively anaerobic sporeforming bacteria of deep-sea sediments of the Black Sea]. Microbiology & Biotechnology. 2017; 40(4):94–103. Ukrainian. https://doi.org/10.18524/2307-4663.2017.4(40).119560
  11. Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics. 2016; 17(1):1–18. https://doi.org/10.1186/s12864-016-3224-y
  12. De S, Kaur G, Roy A, Dogra G, Kaushik R, Yadav P, et al. A Simple Method for the Efficient Isolation of Genomic DNA from Lactobacilli Isolated from Traditional Indian Fermented Milk (dahi). Indian J Microbiol. 2010; 50(4):412–418. https://doi.org/10.1007/s12088-011-0079-4
  13. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-ofthe-art genome-based taxonomy. Nat Commun. 2019; 10(1):1–10. https://doi.org/10.1038/s41467-019-10210-3
  14. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek. 2017; 110(10):1281–1286. https://doi.org/10.1007/s10482-017-0844-4
  15. Wattam AR, Brettin T, Davis JJ, Gerdes S, Kenyon R, Machi D, et al. Assembly, Annotation, and Comparative Genomics in PATRIC, the All Bacterial Bioinformatics Resource Center. In: Comparative Genomics. Methods Mol Biol. New York: Humana Press; 2018. p. 79–101. https://doi.org/10.1007/978-1-4939-7463-4_4
  16. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016; 44(14):6614–6624. https://doi.org/10.1093/nar/gkw569
  17. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic acids research. 2014; 42(1):206–214. https://doi.org/10.1093/nar/gkt1226
  18. Kalkatawi M, Alam I, Bajic VB. BEACON: automated tool for Bacterial Genome Annotation Comparison. BMC Genomics. 2015; 16(1):1–8. https://doi.org/10.1186/s12864-015-1826-4
  19. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019; 47(1):81–87. https://doi.org/10.1093/nar/gkz310
  20. van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018; 46(1):278–281. https://doi.org/10.1093/nar/gky383
  21. Bertelli C, Laird MR, Williams KR, Lau BY, Hoad G, et al. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Research. 2017; 45:30–35. https://doi.org/10.1093/nar/gkx343
  22. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Micobiol. 2014; 52(5):1501–1510. https://doi.org/10.1128/JCM.03617-13
  23. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012; 67(11):2640–2644. https://doi.org/10.1093/jac/dks261
  24. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016; 44(1):16–21. https://doi.org/10.1093/nar/gkw387
  25. Liu J-Y, Pan N-S, Chen Z-L. Characterization of an anti-rice bacterial blight polypeptide LCI. Rice Genetics Newsletter. 1990; 7:151–154.
  26. Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, et al. Amylocyclicin, a Novel Circular Bacteriocin Produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014; 196(10):1842–1852. https://doi.org/10.1128/JB.01474-14
  27. Silva FJ, Ferreira LC, Campos VP, Cruz-Magalhães V, Barros AF, Andrade JP, et al. Complete Genome Sequence of the Biocontrol Agent Bacillus velezensis UFLA258 and its Comparison with Related Species: Diversity within the Commons. Genome Biol Evol. 2019; 11(10):2818–2823. https://doi.org/10.1093/gbe/evz208
  28. Chun BH, Kim KH, Jeong SE, Jeon CO. Genomic and metabolic features of the Bacillus amyloliquefaciens group – B. amyloliquefaciens, B. velezensis, and B. siamensis - revealed by pan-genome analysis. Food Microbiol. 2019; 77:146–157. https://doi.org/10.1016/j.fm.2018.09.001
  29. Lin C, Tsai CH, Chen PY, Wu CY, Chang YL, Yang YL, et al. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One. 2018; 13(4):1–17. https://doi.org/10.1371/journal.pone.0196520