Mikrobiol. Z. 2020; 82(2):60-66.
doi: https://doi.org/10.15407/microbiolj82.02.060

Antagonism of Streptomyces Species 26UF7 and 35NG3 to
Clavibacter michiganensis subsp. michiganensis 102

S.L. Golembiovska, O.I. Bambura, T.V. Volska, B.P. Matselykh

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Ecological pathways of decision the question of plants opportunism against bacterial cancer of tomatoes. Aim. Search for streptomycetes-antagonists against Clavibacter michiganensis subsp. michiganensis 102 and investigation of their influence on the infectious process in tomatoes in hothouse conditions. The first aim provided microbiological methods, the second required agricultural. Results. 36 (45%) soil streptomycetes from 80 had antagonistic activity against C. michiganensis 102. Selected Streptomyces sp. 26Uf7 and 35NG3 strains showed high and stable rates of activity against phytopathogen in vitro. The pre-sowing treatment with fermentation filtrates of researched streptomycetes doubled the seed germination rate of Cherry tomatoes infected with C. michiganensis 102. However, it has not contributed to the resistance of plants to the disease after mechanical infection of tomato leaves in the juvenile period. In general, metabolites of Streptomyces sp. 26Uf7 and 35NG3 strains increased the tomato yields, although they have not completely nullified the impact of infection in hothouse conditions. Conclusions. Metabolites of Streptomyces sp. 26Uf7 and Streptomyces sp. 35NG3 strains with high rates of in vitro antagonism to C. michiganensis 102 doubled the seed germination and the yield of Cherry tomatoes and had 75% efficiency against phytopathogen in hothouse conditions.

Keywords: Clavibacter michiganensis subsp. michiganensis, bacterial cancer, antagonism of streptomycetes.

Full text (PDF, in English)

  1. Gartemann KH, Abt B, Bekel T, Burger A, Engemann J, Flugel M, et al. The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. J Bacteriol. 2008; 190:2138–2149. https://doi.org/10.1128/JB.01595-07
  2. Nandi M, Macdonald J, Liu P, Weselowski B, Yuan Z‐C. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management. Mol Plant Pathol. 2018; 19(8):2036–2050. https://doi.org/10.1111/mpp.12678
  3. Thapa SP, Pattathil S, Hahn MG, Jacques MA, Gilbertson RL, Coaker G. Genomic analysis of Clavibacter michiganensis reveals insight into virulence strategies and genetic diversity of a Gram‐positive bacterial pathogen. Mol Plant–Microbe Interact. 2017; 30:786–802. https://doi.org/10.1094/MPMI-06-17-0146-R
  4. Gvozdyak RI, Moroz SM, Yakovleva LM, Chernenko EP. Hvozdiak. [Etiology of disease of tomatoes at the farms of Ukraine]. Mikrobiol Z. 2009; 71(5):33–40. Ukrainian.
  5. Nyzamdynova HK. Sahytov AO. [Ozdorovlenye semian tomata ot bakteryalnoi ynfektsyy]. KazNAU. 2015; 253–56. Russian.
  6. Nyzamdynova HK. [Osnovnye bakteryalnye bolezny tomata y puty snyzhenyia ykh vredonosnosty v uslovyiakh yuho-vostoka Kazakhstana]. Dyser PhD. Respublyka Kazakhstan, Almaty. 2017. Russian.
  7. Vinogradova OB. [Ispolzovanie bakteriy-antagonistov protiv bolezney tomata v zaschischyonnom grunte]. Avtoreferat diser. Moskva. 2011. Russian.
  8. Roy AA, Pasichnyk LA, Tserkovniak LS, Khodos SF, Kurdish IK. [Influence of bacteria of Bacillus genus on the agent of bacterial cancer of tomatoes]. Mikrobiol Z. 2012; 74(5):74–80. Russian.
  9. Biliavska LA, Efimenko TA, Efremenkova OV, Koziritska VYe, Iutynska GA. [Identification and antagonistic properties of the soil streptomycete Streptomyces sp. 100]. Mikrobiol Z. 2016; 78(2):61–73. Russian. https://doi.org/10.15407/microbiolj78.02.061
  10. Zhang W, Yang W, Meng Q, Li Y, Liu D. Screening and identification of antagonistic Streptomyces spp. against Clavibacter michiganensis subsp. michiganensis from tomato rhizoshere. Frontiers of Agriculture in China. 2010; 4(2):159–164. https://doi.org/10.1007/s11703-010-0095-x
  11. Gvozdyak RI, Yakovleva LM, Chernetko EP, Moroz SM. [Vzaemovidnoshennya mizh zbudnikami bakterioziv tomativ]. Visnik DAU. 2005; 2:168–173. Ukrainian.
  12. Balint-Kurti P. The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol. 2019; 20(8):1163–1178. https://doi.org/10.1111/mpp.12821