Mikrobiol. Z. 2020; 82(2):51-59. Ukrainian.
doi: https://doi.org/10.15407/microbiolj82.02.051

Glycosidase and Proteolytic Activity of Micromycetes Isolated
from the Chernobyl Exclusion Zone

N.V. Borzova, O.V. Gudzenko, L.D. Varbanets, L.T. Nakonechnaya, T.I. Tugay

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Studies of microscopic fungi of extreme ecosystems are of interest both in terms of researching the mechanisms of adaptation processes and in connection with the high biotechnological potential of micromycetes. Аim. To investigate α-L-rhamnosidase, mannan-degrading and proteolytic activity of micromycetes cultures isolated from the Chеrnobyl Exclusion Zone. Methods. Naringin was used as a substrate for determining α-L-rhamnosidase activity, p-nitrophenyl-α-D-galactopyrano-side – for α-galactosidase activity, and galactomannan guar – for β-mananase activity. Screening of proteolytic activities was performed using 10% gelatin medium and 1% casein agar. Results. It was shown that 42% of the tested strains showed α-L-rhamnosidase (0.01–1.1 U/ml), 75% – α-galactosidase (0.05–3.0 U/ml), 50% – β-mannanase (0.5–45 U/ml) and 74% – proteolytic activity. Three glycosidase activities were observed in Eupenicillium pinetorum, Trichoderma viride, Eurotium herbariorum, Aspergillus flavipes, Aspergillus ochraceus, Aspergillus flavus, Penicillium adametzii, Penicillium decumbens, Penicillium restrictum, Penicillium variabile, Penicillium verrucosum. Conclusions. High degradation activity of A. flavipes, P. decumbens, P. clavigerum, P. restrictum, P. roseopurpureum and P. sacculum strains against substrates containing terminal rhamnose and galactose residues, ability to hydrolyze galactomannan, casein and gelatin were showed. It has been shown that technogenic pollution areas can be a source of new producers of biotechnologically important enzymes.

Keywords: micromycetes, α-L-rhamnosidase, β-mannanase, α-galactosidase, proteolytic activity.

Full text (PDF, in Ukrainian)

  1. Cantrell SA, Dianese JC, Fell J, Gunde-Cimerman N, Zalar P. Unusual fungal niches. Mycologia. 2011; 103(6):1161–1174. https://doi.org/10.3852/11-108
  2. Batista-García RA, Sutton T, Jackson SA, Tovar-Herrera OE, Balcazar-Lopez E, Sanchez-Carbente MD, Sanchez-Reyes A, Dobson AD, Folch-Mallol JL. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One. 2017; 12(3): e0173750. https://doi.org/10.1371/journal.pone.0173750
  3. Dalmaso GZL, Ferreira D, Vermelho AB. Marine extremophiles a source of hydrolases for biotechnological applications. MarDrugs. 2015; 13(14): 1925–1965. https://doi.org/10.3390/md13041925
  4. Steinhauser G, Brandl A, Johnson TE. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ. 2014; 470–471:800–817. https://doi.org/10.1016/j.scitotenv.2013.10.029
  5. Romanovskaia VA, Sokolov IG, Rokitko PV, Chernaia NA. [Ecological consequences of radioactive pollution for soil bacteria within the 10-km region around the Chernobyl Atomic Energy Station]. Mikrobiologiia. 1998; 67(2):274–280. Russian.
  6. Dighton J, Tugay T, Zhdanova N. Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett. 2008; 281(2):109–120. https://doi.org/10.1111/j.1574-6968.2008.01076.x
  7. Belozerskaya TA, Aslanidi K, Gessler N, Egorova A, Karpenko Yu, Olishevskaya S. Characteristics of extremophylic fungi from Chernobyl Nuclear Power Plant. In: Mendez Vilas A, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Res Center, 2010; 1:88–94.
  8. Egorova AS, Gessler NN, Belozerskaya TA, Ryasanova LP, Kulakovskaya TV. [Stress resistance mechanisms in the indicator fungi from highly radioactive Chernobyl zone sites]. Mikrobiologiia. 2015; 84(2):152–158. Russian. https://doi.org/10.1134/S0026261715020034
  9. Aulitto M, Fusco S, Limauro D, Fiorentino G, Bartolucci S, Contursi P. Galactomannan degradation by thermophilic enzymes: a hot topic for biotechnological applications. World J Microbiol Biotechnol. 2019; 35(2):32. https://doi.org/10.1007/s11274-019-2591-3
  10. Dumorne K, Cordova DC, Astorga-Elo M, Renganathan P. Extremozymes: a potential source for industrial applications. J Microbiol Biotechnol. 2017; 27(4):649–659. https://doi.org/10.4014/jmb.1611.11006
  11. Brandt SC, Ellinger B, van Nguyen T, Thi QD, van Nguyen G, Baschien C, Yurkov A, Hahnke RL, Schafer W, Gand M. A unique fungal strain collection from Vietnam characterized for high performance degraders of bioecological important biopolymers and lipids. PLoS One. 2018; 13(8):e0202695. https://doi.org/10.1371/journal.pone.0202695
  12. Chambergo FS, Valencia EY. Fungal biodiversity to biotechnology. Appl Microbiol Biotechnol. 2016; 100(6):2567–2577. https://doi.org/10.1007/s00253-016-7305-2
  13. Srivastava PK, Kapoor M. Production, properties, and applications of endo-β-mannanases. Biotechnol Adv. 2017; 35(1):1–19. https://doi.org/10.1016/j.biotechadv.2016.11.001
  14. David A, Singh Chauhan P, Kumar A, Angural S, Kumar D, Puri N, Gupta N. Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives. Int J Biol Macromol. 2018;108:1176–1184. https://doi.org/10.1016/j.ijbiomac.2017.09.037
  15. Slamova K., Kapesova J., Valentova K. “Sweet Flavonoids”: Glycosidase-catalyzed modifications. Int J Mol Sci. 2018; 19(7):21–26. https://doi.org/10.3390/ijms19072126
  16. Chaplin ME, Kennedy JE. Carbohydrate analysis. Oxford: IRL Press, 1986.
  17. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem. 1959; 31:426–428. https://doi.org/10.1021/ac60147a030
  18. Davis B.J. Assay of naringinase. Anal Biochem. 1985; 149(2):566–571. https://doi.org/10.1016/0003-2697(85)90614-1
  19. Vermelho AB, Meirelles MNL, Lopes A, Petinate SDG, Chaia AA, Branquinha MH. Detection of extracellular proteases from microorganisms on agar plates. Mem Inst Oswaldo Cruz, Rio de Janeiro. 1996, 91(6):755–760. https://doi.org/10.1590/S0074-02761996000600020
  20. Katrolia P, Rajashekhara E, Yan Q, Jiang Z. Biotechnological potential of microbialagalactosidases. Crit Rev Biotechnol, 2014; 34(4):307–317. https://doi.org/10.3109/07388551.2013.794124
  21. Frac M, Hannula SE, Belka M, Jedryczka M. Fungal biodiversity and their role in soil health. Front Microbiol. 2018; 9:707. https://doi.org/10.3389/fmicb.2018.00707
  22. Yadav V, Yadav PK, Yadav S, Yadav KDS. α-l-Rhamnosidase: A review. Process Biochemistry. 2010; 45(8):1226–1235. https://doi.org/10.1016/j.procbio.2010.05.025