Mikrobiol. Z. 2020; 82(2):30-37. Ukrainian.
doi: https://doi.org/10.15407/microbiolj82.02.030

Pantoea agglomerans Influence on the State and Activity of Cereals Photosynthetic Apparatus

H.B. Huliaieva, L.A. Pasichnyk, F.V. Muchnyk, V.P. Patyka

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Current interest to Pantoea agglomerans is due to its biodiversity and beneficial properties of metabolites and, on the other hand – exist need to investigate its harmfulness. Purpose. Investigation of Triticum aestivum L. and Secale cereale L. cereal crops plants infection with P. agglomerans strains on photochemical and enzymatic activity of these crops photosynthetic apparatus. Methods. Bacteria cultivation and suspension preparation were carried out using conventional methods, artificial plant inoculation with obtained suspensions was performed by injection to the culm of rye and wheat in the booting stage. Photochemical activity of leaves was determined using chlorophyll fluorescence induction method. The activity of antioxidant enzymes was determined by the rate of decomposition of hydrogen peroxide: catalase – permanganatometrically, and peroxidase – by reaction with benzidine and further photometry. MS Excel was used for statistical analysis. Results. Data of effects of Triticum aestivum L. and Secale cereale L. plant inoculation with P. agglomerans pathogenic strains isolated from S. cereale L. seeds on the antioxidant enzymes activity of leaf tissue and photochemical activity of photosynthetic apparatus are generalized. The most significant changes in the activity of antioxidant enzymes of rye leaves was revealed under the conditions of artificial infection of P. agglomerans 7460, compared with intact plants of S. cereale L.: peroxidase activity increased almost twice, and catalase – by 32.6%, which may be due to hypersensitivity reaction activation. An increase of peroxidase activity by 50.4% and decrease of catalase activity by 48.4% compared to intact plants was detected in leaves tissue after T. aestivum L. plants inoculation with P. agglomerans 7604 isolated from S. cereale L. seeds. It was shown that S. cereale L. and T. aestivum L. plants inoculation with P. agglomerans 7460 phytopathogenic bacteria from S. cereale L. seeds led to a more significant inhibition of photosystem II (PSII) quantum efficiency and T. aestivum L. leaves assimilation activity than S. cereale L., which indicates a greater adaptive potential of this pathogen. Conclusions. It was found that inoculation of S. cereale L. plants with P. agglomerans 7460 that may cause pathological process in this plants species, led to a significant increase in the activity of plant oxidoreductases in leaves tissues – catalase and peroxidase. Different effect of non-specific for T. aestivum L. P. agglomerans strains inoculation on the activity of leaf tissue oxidoreductases compared with intact plants was detected: P. agglomerans 7604 infection decreased the activity of both researched oxidoreductases, and P. agglomerans 7460 inoculation decreased catalase at increased peroxidase activity, which may be due to the difference in the chemical structure of this strains exometabolites. After P. agglomerans 7604 inoculation, the slow phase of photosynthesis was limited, and, therefore, the carbon assimilation rate of T. aestivum L. after P. agglomerans 7460 inoculation showed more significant inhibition of leaves photochemical activity. A decrease in both the quantum efficiency of PSII and the activity of carbon assimilation was observed, which may indicate greater adaptability of the second strain.

Keywords: Triticum aestivum L., Secale cereale L., Pantoea agglomerans, catalase, peroxidase, chlorophyll fluorescence induction.

Full text (PDF, in Ukrainian)

  1. Chebotar VK, Shcherbakov AV, Shcherbakova EN, Maslennikova SN, Zaplatkin AN, Mal`fanova NV. [Biodiversity of endophytic bacteria as a promising biotechnological resource]. Sel`skokhoziaistvennaia biologiia 2015; 50(5):648–654. Russian. https://doi.org/10.15389/agrobiology.2015.5.648eng
  2. Ivanytsia TV, Strashnova IV, Smalchuk DS. [Characteristics of bacterial genus Pantoea]. Microbiology and Biotechnology. 2018; (3):6–25. Russian. https://doi.org/10.18524/2307-4663.2018.3(43).142584
  3. Monier J-M, Lindow SE. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb Ecol. 2005; 49:343–352. https://doi.org/10.1007/s00248-004-0007-9
  4. Bergey’s Manual of Systematic Bacteriology. Vol. 2. The Proteobacteria. Part B The Gamma-proteobacteria. Don J. Breuner, Noel R. Krieg, Jams T. Staley, Editors, Editor-in-chief G.M. Garrity. 2th ed. New York: Springer; 2005.
  5. Procópio RE, Araújo WL, Maccheroni W Jr, Azevedo JL. Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet Mol Res. 2009; 8(4):1408–22. https://doi.org/10.4238/vol8-4gmr691
  6. Braun-Kiewnick A, Jacobsen BJ, Sands DC. Biological Control of Pseudomonas syringae pv. syringae, the Causal Agent of Basal Kernel Blight of Barley, by Antagonistic Pantoea agglomerans. Phytopathology. 2000; 90:368–375. https://doi.org/10.1094/PHYTO.2000.90.4.368
  7. Francés J, Bonaterra A, Moreno MC, Cabrefiga J, Badosa E, Montesinos E. Pathogen aggressiveness and postharvest biocontrol efficiency in Pantoea agglomerans. Postharvest Biol Technol. 2006; 39(3):299–307. https://doi.org/10.1016/j.postharvbio.2005.11.002
  8. Nabrdalik M, Moliszewska E, Wierzba S. Importance of Endophytic Strains Pantoea agglomerans in the Biological Control of Rhizoctonia solani. ECOL CHEM ENG S. 2018; 25(2):331–342. https://doi.org/10.1515/eces-2018-0023
  9. Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M, Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Ann Agric Environ Med. 2016; 23(2):206–222. https://doi.org/10.5604/12321966.1203879
  10. Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M, Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals and plants. Ann Agric Environ Med. 2016; 23(2):197–205. https://doi.org/10.5604/12321966.1203878
  11. Aksoy HM, Boluk E. First report of Pantoea agglomerans on Oryza sativa in Turkey. Journal of Plant Pathology. 2019; 101:449. https://doi.org/10.1007/s42161-018-00213-2
  12. Guo M, Liu Y, Liu SN, Qu QZ, Cui TF, Zhang YW. First Report of Bacterial Soft Rot Caused by Pantoea agglomerans on Chinese Cabbage in China. Plant Disease. 2020; 104(1):277. https://doi.org/10.1094/PDIS-04-19-0746-PDN
  13. Dai Y, Sun L, Yin X, Gao M, Zhao Y, Jia P, et al. Pleurotus eryngii Genomes Reveal Evolution and Adaptation to the Gobi Desert Environment. Frontiers in microbiology. 2019; 10:2024. https://doi.org/10.3389/fmicb.2019.02024
  14. Venincasa V, Kuriyan A, Flynn Jr. H, Sridhar J, Miller D. Endophthalmitis caused by Pantoea agglomerans: clinical features, antibiotic sensitivities, and outcomes. Clinical Ophthalmology. 2015; 9:1203–1207. https://doi.org/10.2147/OPTH.S80748
  15. Rezzonico F, Smits TH, Montesinos E, Frey JE, Duffy B. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol. 2009; 9:204.
  16. [Portatyvnyi fluorometr «Florotest»: nastanova z ekspluatatsii]. Instytut kibernetyky im. V. M. Hlushkova NAS Ukrainy. Ukrainian. https://doi.org/10.1186/1471-2180-9-204
  17. Huliaieva H, Tokovenko I, Maksin V, Kaplunenko V, Kalinichenko A. Effect of nanoaquacitrates on physiological parameters of Fodder galega infected with phytoplasma. ECOL CHEM ENG S. 2018; 20(1):153–168. https://doi.org/10.1515/eces-2018-0011
  18. Braion OV, Kornieiev DIu, Sniehur OO, Kytaiev OI. [Instrumentalne vyvchennia fotosyntetychnoho aparatu za dopomohoiu induktsii fluorestsentsii khlorofilu: Metodychni vkazivky dlia studentiv biolohichnoho fakultetu]. Kyiv: Vydavnycho-polihrafichnyi tsentr «Kyivskyi universytet», 2000. Ukrainian.
  19. Holtsev VN, Kaladzhi XM, Paunov M, Baba V, Khorachek T, Moiski Ia, et al. [Ispolzovaniie peremennoi fluorestsentsii khlorofila dlia otsenki fiziolohicheskogo sostoianiia fotosinteticheskogo apparata rastenii]. Fiziolohiia rastenii. 2016; 63(6):881–907. Russian.
  20. Kirik N, Taranukho Yu, Taranukho N, Kitayevo, Skriagha V, Artemenko D. [Diagnostics of viral infection of plants of black currant and raspberry using a method of induction of fluorescence of chlorophyll pigment of leaves]. Visnyk ahrarnoi nauky. 2011; 10:26–28. Ukrainian.
  21. Lichtenthaler HK, Babani F, Langsdorf G. Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth Res. 2007; 93:235–244. https://doi.org/10.1007/s11120-007-9174-0
  22. Sharma DK, Andersen SB, Ottosen C, Rosenqvist E. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia plantarum. 2015; 153:284–298. https://doi.org/10.1111/ppl.12245
  23. Stirbet A, Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J Photochem and Photobiol. 2011; 104(1–2):236–257. https://doi.org/10.1016/j.jphotobiol.2010.12.010
  24. Karpenko VP, Prytuliak RM, Chernega AO. [Aktyvnist okremykh antyoksydantnykh fermentiv klasu oksyreduktaz za dii herbitsydu Kalibr i reguliatora rostu Roslyn Biolan]. Zbirnyk nauk prats Umanskoho Natsionalnoho Universytetu sadivnytstva. 2013; 83(1):19–25. Ukrainian.
  25. Obozniy OI, Yastreb TO, Kolupaev YuYe, Popov VM, Kryvoruchenko RV. [Influence of short-term heating on activity and thermostability of soluble peroxidase in roots of wheat of different ecotypes]. Visnyk Kharkiv natsion ahrarn un-tu. Ser. Biolohiia. 2010; 2 (20):61–68. Ukrainian.
  26. Bakalova S, Nikolova A, Nedeva D. Isoenzyme profiles of peroxidase, catalase and superoxide dismutase as affected by dehydration stress and ABA during germination of wheat seeds. Bulg J Plant Physiol. 2004; 30(1–2):64–77.
  27. Luhova L, Lebeda A, Hedererova, Pec P. Activities of aminooxidase, peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil Environ. 2003; 49(4):151–157. https://doi.org/10.17221/4106-PSE
  28. Miroshnichenko OS. [Biogenez, fiziolohicheskaia rol i svoistva katalazy]. Biopolymers and cell. 1992; 8(6):3–25. Russian. https://doi.org/10.7124/bc.00033C
  29. Kolupaev YuE, Karpets YuV, Oboznyi AY. [Antioksidantnaia sistema rasteniy: uchastie v kletochnoi sihnalizatsii i adaptatsii k deistviiu stressorov]. Visnyk Kharkiv natsion ahrarn un-tu. Ser. Biolohiia. 2011;1(22):6–34. Russian.
  30. Shadchyna TM, Gulyaev BI, Kirizii DA, Stasyk OO, Pryadkina GO, Storozhenko VO. [Rehuliatsiia fotosyntezu i produktyvnist roslyn: fiziologichni ta ekologichni aspekty]. Kyiv: Fitosotsiocentr, 2006. Ukrainian.
  31. Ivanytsia TV, Strashnova IV. [Quantity and biological properties of the bacterium Pantoea agglomerans isolated from different grape varieties in Odesa region]. Microbiology and Biotechnology. 2018; (3):50–64. Russian. https://doi.org/10.18524/2307-4663.2018.3(43).142585