Mikrobiol. Z. 2020; 82(1):62-73. Ukrainian.
doi: https://doi.org/10.15407/microbiolj82.01.062

Symbiotic Microbial Communities of Insects: Functioning and Entomopathogenic Action Potential
Initiation on the Example of Bacillus thuringiensis

N.V. Patyka, T.I. Patyka

National University of Life and Environmental Sciences of Ukraine
13 Heroyiv Oborony Str., Kyiv, 03041, Ukraine

The review provides current literature and authors’ experimental studies of microsymbionts that function, circulate, and have varying degrees of entomopathogenic action in the organisms of different insect species. Complex scientific work on screening, study of Bacillus thuringiensis spore bacteria biome in different ecosystems, analysis of their specific entomotoxic interactions with target macroorganism are of particular scientific and practical value today. Extracellular microbiome of healthy and diseased insects is localized mainly on covers, oral apparatus and intestine, and is most often redistributed in the abdominal cavity and internal organs of the host. Exometagenome of bacteria is more complex and functionally diverse than metagenome of intracellular microorganisms, so it is widely studied and used in microbiological control of phytophages. Current scientific direction of such researches is deepening knowledge about Cry B. thuringiensis genes expression and regulatory factors acting at the transcriptional, post-transcriptional, metabolic and post-translational levels. Therefore, the “entomopathogenic bacteria B. thuringiensis – phytophage” system is considered as an effective model for studying the interaction and evolutionary ecology of bacterial virulence.

Keywords: microbiome, bacterial symbionts, entomopathogenic bacteria B. thuringiensis, microbiological control.

Full text (PDF, in Ukrainian)

  1. Kandybin NV, Patyka TI, Ermolova VP, Patyka VF. [Microbiocontrol of the number of insects and its dominant Bacillus thuringiensis]. St. Petersburg-Pushkin: Innovation Center for Plant Protection; 2009. Russian.
  2. Ferrari J, Vavre F. Bacterial symbionts in insects or the story of communities affecting communities. Philosophical Transactions R Soc Lond B Biol Sci. 2011; 366(1569):1389–1400. https://doi.org/10.1098/rstb.2010.0226
  3. Gadzalo YaM, Patyka NV, Zaryshnyak AS, Patyka TI. [Agroecological engineering in rhizosphere biocontrol plants and formation of soil health]. Mikrobiol Z. 2017; 79(4):88–109. Ukrainian. https://doi.org/10.15407/microbiolj79.04.088
  4. Crickmore N. The diversity of Bacillus thuringiensis endotoxins. Entomopathogenic bacteria: from laboratory to field application. Kluwer Acad Publ. The Netherlands. 2000:65–79. https://doi.org/10.1007/978-94-017-1429-7_4
  5. Patyka TI, Lesovoy NM, Patyka NV, Kolodjazhnyi AYu. [Biocenotical approaches using entomopathogenic bacteria of Bacillus thuringiensis the season growing potatoes and storage]. Mikrobiol Z . 2016; 78(3):69–77. Ukrainian. https://doi.org/10.15407/microbiolj78.03.069
  6. Dubos R, Kessler A. Integrative and disintegrative factors in symbiotic associations. In: Symbiotic Associations. Proc sympos soc gen Microbiol Cambridge, Univ Press: 1963; 13:1–11.
  7. Schwemmler W. Endocytobiology: a modern field between symbiosis and cell research. In: Endocytobiology I. Endosymbiosis and Cell Biology. W. Schwemmler, H.E.A.Schenk, editors. 1980B; 1:943–967.
  8. Kozo-Polyansky B. Symbiogenesis. A new principle of evolution. In: transl Fet V, eds Fet V, Margulis L. Harvard University Press, Cambridge MA (from the Russian edition, 1924); 2010:198.
  9. Margulis L. Symbiogenesis and symbionticism. In: Margulis L, Fester R, editors. Symbiosis As a Source of Evolutionary Innovation: Speciation and Morphogenesis. MIT Press; Cambridge, MA: 1991:1–13.
  10. Dogel VA. [General parasitology]. Leningrad: Leningrad State University; 1962. Russian.
  11. Steinhaus E. [Insect Pathology]. Moscow: Publishing house of foreign literature; 1952. Russian.
  12. Hertig M, Wolbach S. Studies on Rickettsia-like microorganisms in Insects. The Journal of Medical Research; 1924; 44(3):329–374.
  13. Yen JH, Barr AR. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature. 1971; 232(5313):657– 658. https://doi.org/10.1038/232657a0
  14. Guillemaud T, Pasteur N, Rousset F. Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquito Culex pipiens. Proc R Soc Lond B. 1997; 264:245–251. https://doi.org/10.1098/rspb.1997.0035
  15. Atyame CM, Delsuc F, Pasteur N, Weill M, Duron O. Diversification of Wolbachia Endosymbiont in the Culex pipiens Mosquito. Molecular Biology and Evolution; 2011; 28(10): 2761–2772. https://doi.org/10.1093/molbev/msr083
  16. Hurst GDD,Walker LE, Majerus MEN. Bacterial infections of hemocytes associated with the maternally inherited male-killing trait in british populations of the two spot ladybird, Adalia bipunctata. Journal of Invertebrate Pathology. 1996; 68(3):286–292. https://doi.org/10.1006/jipa.1996.0098
  17. Werren JH, Baldo L, Clark ME. Wolbachia: Master manipulators of invertebrate biology. Nature Reviews Microbiology. 2008; 6(10):741–751. https://doi.org/10.1038/nrmicro1969
  18. Saridaki A, Bourtzis K. Wolbachia: more than just a bug in insects genitals. Current opinion in microbiology. 2010; 13(1):67–72. https://doi.org/10.1016/j.mib.2009.11.005
  19. Dumas E, Atyame CM, Milesi P, Fonseca DM, Shaikevich EV, Unal S, et al. Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species. BMC Evol Biol. 2013; 13(1):181. https://doi.org/10.1186/1471-2148-13-181
  20. Jiggins FM, Hurst GD. The evolution of parasite recognition genes in the innate immune system: purifying selection on Drosophila melanogaster peptidoglycan recognition proteins. J Mol Evol. 2003; 57(5):598–605. https://doi.org/10.1007/s00239-003-2506-6
  21. White JF, Sullivan RF, Moy M, et al. Evolution of the epiphyllous stage of a Neotyphodium endophytes and other Clavicipitacean biotrophs. In: Symbiosis: mechanisms and model systems. Seckbach J., editor. Dordrecht, Boston, L, 2002:413–424. https://doi.org/10.1007/0-306-48173-1_26
  22. Provorov NA. Onishchuk OP. [Insect symbionts microorganisms: genetic organization, adaptive value, evolution]. Microbiology. 2018; 87(2):99–113. Russian. https://doi.org/10.1134/S002626171802011X
  23. Gadzalo YM, Patyka MV, Zarishnyak AS. [Agrobiology of the rhizosphere of plants]. Kyiv: Agrarian Science; 2015. Russian.
  24. Patyka TI, Patyka NV, Patyka VF. [Phylogenetic interrelations between serological variants of Bacillus thuringiensis]. Biopolym Cell. 2009; 25(3):240–244. Russian. https://doi.org/10.7124/bc.0007E2
  25. Bravo A, Gill S, Soberon M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007; 49:423−435. https://doi.org/10.1016/j.toxicon.2006.11.022
  26. Pigott C, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev. 2007; 71:255−281. https://doi.org/10.1128/MMBR.00034-06
  27. Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU. Cloning and analysis of the first cry gene from Bacillus popilliae. J Bacteriol. 1997; 179:4336−4341. https://doi.org/10.1128/JB.179.13.4336-4341.1997
  28. Smirnov VV, Sorokulova IB, Pinchuk IV. [Bacteria of Bacillus species – prospective source for biologically active substances]. Mikrobiol Z. 2001; 1(63):72−79. Russian.
  29. Ibrahim MA, Griko N, Junke M, Bulla LA. Bacillus thuringiensis. A genomic and proteomics perspective. Bioengineered bugs: 2010; 1:31–50. https://doi.org/10.4161/bbug.1.1.10519
  30. Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N. Bacillus thuringiensis: An impotent pathogen. Trends Microbiol. 2010; 18:189–194. https://doi.org/10.1016/j.tim.2010.02.006
  31. Adang MJ, Crickmore N, Jurat-fuentes JL. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Adv Insect Physiol. 2014; 47:39–87. https://doi.org/10.1016/B978-0-12-800197-4.00002-6
  32. Hernandez CS, Martinez C, Porcar M, Caballero P, Ferre J. Correlation between serovars of Bacillus thuringiensis and type I beta-exotoxin production. J Invertebr Pathol. 2003; 82:57–62. https://doi.org/10.1016/S0022-2011(02)00199-4
  33. Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial symbionts in Lepidoptera: their diversity, transmission and impact on the host. Front Microbiol. 2018; 9:556. https://doi.org/10.3389/fmicb.2018.00556
  34. Boyko MV, Patyka NV, Patyka TI. Estimation of productivity Bacillus thuringiensis on different media. Microbiology and biotechnology. 2017; 1(37):16–22. https://doi.org/10.18524/2307-4663.2017.1(37).96320
  35. Boyko M, Patyka N, Vintskovs’ka Yu. Estimation of the genus Bacillus bacterial strains antagonist properties against pathogenic micromycetes. Annals of Advanced Agricultral Sciences. 2017; 1(2):65–69.
  36. Patyka TI, Kriuchkova LA, Patyka MV. [Biological control of phytopathogenic organisms in agrocenoses using bacteria of the genus Bacillus]. Horticulture. 2018; 73:142–148. Ukrainian. https://doi.org/10.35205/0558-1125-2018-73-142-148
  37. Kriuchkova LO, Shmyhel TS, Chehun K, Patyka TI. Biological control of root, leaf and ear diseases of small cereal crops with new Bacillus strains. Protecția Plantelor în Agricultura Convențională și Ecologică în numele Proiectului Consolidarea capacităților regionale pentru aplicarea tehnologiilor ecologice în sistemele integrate de gestionare a dăunătorilor. Chișinău, Republica Moldova; 2018. p. 254–257.
  38. Patyka T, Patyka N. [Regulation of technological activity of Bacillus thuringiensis strains 87-15 in conditions of deep cultivation]. Biological systems: theory and innovation. Publishing center of the National University of Life and Environmental Sciences of Ukraine. 2019; 3:27–36. Ukrainian. https://doi.org/10.31548/biologiya2019.03.027
  39. Krasyukov MO, Patyka MV, Patyka TI. [Molecular and biological determination of the fungicidal activity of Bacillus spp. isolates]. Proceedings of the International Scientific Practice. Sustainable Development Goals of the Third Millennium: Challenges for Universities of Life Sciences; 2018 May 23–25; Kyiv, Ukraine; 2018. p. 122. Ukrainian.
  40. Voznyakovskaya YuM. [Microflora of plants and harvest]. Leningrad: Colossus publ.; 1969. Russian.
  41. Noda S, Ohkuma M, Usami R, Horikoshi K, Kudo T. Culture-independent characterization of a gene responsible for nitrogen fxation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis. Appl Environ Microbiol. 1999; 65:4935–4942. https://doi.org/10.1128/AEM.65.11.4935-4942.1999
  42. Boyko MV, Patyka TI, Patyka MV. [Molecular and biological features of the entomopathogenic strain Bacillus thuringiensis 87/3]. Agriculture and forestry. 2018; 11:90–98. Ukrainian.
  43. Patyka TI, Boyko MV, Patyka NV. [Biotechnological multifunctionality ofmetabolic spore-crystal complex and peculiarities of Bacillus thuringiensis cultivation]. Mikrobiol Z. 2017; 79(2):78–85. Ukrainian. https://doi.org/10.15407/microbiolj79.02.078
  44. Boyko MV. [Functional biotechnological agents Bacillus thuringiensis for colorado beetle population control] abstract. diss. PhD (agricultural sciences by specialty 03.00.20 biotechnology). National University of Life and Environmental Sciences of Ukraine. Kyiv, 2019. Ukrainian.
  45. Peng Q, Yu Q, Song F. Expression of Cry genes in Bacillus thuringiensis biotechnology. Applied Microbiology and Biotechnology. 2019; 103(4):1617–1626. https://doi.org/10.1007/s00253-018-9552-x
  46. Deng Ch, Peng Q, Song F, Lereclus D. Regulation of Cry gene expression in Bacillus thuringiensis. Toxins. 2014; 6:2194–2209. https://doi.org/10.3390/toxins6072194