Mikrobiol. Z. 2019; 81(6):131-146. Ukrainian.
doi: https://doi.org/10.15407/microbiolj81.06.131

Lactobacillus Bacteria: Biological and Therapeutic Properties

Voloshyna I.M.1,4, Shkotova L.V.2, Skorokhod S.О.1, Appolonova I.Ye.1, Zholobak N.M.1,3

1Kyiv National University of Technologies and Design
2 Nemyrovycha-Danchenka Str., Kyiv, 01011, Ukraine

2Institute of Molecular Biology and Genetics, NAS of Ukraine
150 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

3Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

4National University of Food Technology
68 Volodymyrska Str., 01601 Kyiv, Ukraine

The review contains literature data on the mechanisms of action and application of bacteria of the Lactobacillus genera in medicine and veterinary medicine. The creation and use of probiotic preparations based on bacteria of the genus Lactobacillus is a relevant area since they exhibit a wide range of antioxidant, antagonistic, immunomodulatory and therapeutic properties. Lactobacilli synthesize a whole spectrum of various biologically active substances, namely acids (lactic, acetic, and butyric), lysozyme, bacteriocins, hydrogen peroxide, etc. Products of microbial metabolism stimulate the production of gastric juices and enzymes necessary to improve digestion, can reduce the side effects of antibiotics, promote the breakdown of bile salts and normalize the body’s lipid metabolism, stabilize the overall psycho-emotional state, and normalize the composition of microbiota.

Keywords: Lactobacillus, probiotics, biotechnology, medicine, veterinary medicine, microorganisms.

Full text (PDF, in Ukrainian)

  1. Akaza H. Precision medicine, Universal Health Coverage (UHC) and intestinal microflora as a new platform for health promotion. Personalized Medicine Universe. 2019. https://doi.org/10.1016/j.pmu.2019.04.003
  2. Ai C, Ma N, Zhang Q, Wang G, Liu X, Tian F, et al. Immunomodulatory effects of different lactic acid bacteria on allergic response and its relationship with in vitro properties. PLoS One. 2016; 11(10):e0164697. https://doi.org/10.1371/journal.pone.0164697
  3. Wu CT, Chen PJ, Lee YT, Ko JL, Lue KH. Effects of immunomodulatory supplementation with Lactobacillus rhamnosus on airway inflammation in a mouse asthma model. J Microbiol Immunol Infect. 2016; 49(5):625–635. https://doi.org/10.1016/j.jmii.2014.08.001
  4. Zwielehner J, Handschur M, Michaelsen A, Irez S, Demel M, Denner EB, et al. DGGE and real-time PCR analysis of lactic acid bacteria in bacterial communities of the phyllosphere of lettuce. Mol Nutr Food Res. 2008; 52(5):614–623. https://doi.org/10.1002/mnfr.200700158
  5. Botina SG, Klimina KM, Glazova AA, Zakharevich NV, Danilenko VN, Koroban NV, et al. [Genetic diversity of the genus Lactobacillus bacteria from the human gastrointestinal microbiome]. Rus J Genet. 2010; 46(12):1399–1406. Russian. https://doi.org/10.1134/S102279541012001X
  6. Chervinets YV, Botina SG, Glazova AA, Koroban NV, Chervinets VM, Samoukina AM, et al. [A genetic certification and learning abilities to the formation of biofilms Lactobacillus, selected from the oral cavity of healthy people]. Clinical lab Diagnost. 2011; 2:44–46. Russian.
  7. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology. 2016; 14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533
  8. Rubel M, Voloshyna I. [The use of probiotic microorganisms in cosmetic medical products]. Scientific works of National university of food technologies. 2014; 2(20):23‒29. Ukrainian.
  9. De Angelis M, Gobbetti M. Lactobacillus spp.: General Characteristics. Reference Module in Food Science. University “Aldo Moro” of Bari, Ital; 2016. https://doi.org/10.1016/B978-0-08-100596-5.00851-9
  10. Kalyuzhin OV. [Probioticheskie shtammy laktobacill kak immunomodulyatory: v fokuse – Lactobacillus rhamnosus GG]. Medicinskij sovet. 2017; 9:108–115. Russian.
  11. Ozogul F, Hamed I. Lactic Acid Bacteria: Lactobacillus spp.: Lactobacillus acidophilus. Reference Module in Food Science. 2016. https://doi.org/10.1016/B978-0-08-100596-5.00852-0
  12. Glushanova NA. [Biological properties of Lactobacillus]. Bulletin of sebira medicine. 2003; 4:50–58. Russian.
  13. Kim MS, Byun JS, Yoon YS, Yum DY, Chung MJ, Lee JC. A probiotic combination attenuates experimental colitis through inhibition of innate cytokine production. Benefic Microbes. 2017; 8(2):231–241. https://doi.org/10.3920/BM2016.0031
  14. Yan F, Polk DB. Lactobacillus rhamnosus GG: An Updated strategy to use microbial products to promote health. Funct. Food Rev. 2012; 4(2):77–84.
  15. Tang W, Xing Z, Li C, Wang J, Wang Y. Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chemistry. 2017; 221:1642–1649. https://doi.org/10.1016/j.foodchem.2016.10.124
  16. Son SH, Yang SJ, Jeon HL, Yu HS, Lee NK, Park YS, et al. Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microbial Pathogenesis. 2018; 125:486–492. https://doi.org/10.1016/j.micpath.2018.10.018
  17. Min WH, Fang XB, Wu T, Fang L, Liu CL, Wang J. Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103. J Biosci Bioeng. 2018; 1389‒1723(18):30832‒6.
  18. Aguilar-Toalá JE, Estrada-Montoya MC, Liceaga AM, Garcia HS, González-Aguilar GA, Vallejo-Cordoba B, et al. An insight on antioxidant properties of the intracellular content of Lactobacillus casei CRL-431. LWT. 2019 102:58–63. https://doi.org/10.1016/j.lwt.2018.12.015
  19. Egorov NS, Baranov I. [Bacteriocins. Education, properties, application]. Antibiotics and chemotherapy. 1999; 6:33–40. Russian.
  20. Kumariya R., Garsa A. K., Rajput Y. S., Sood S. K., Akhtar N., Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis 2019; 128:171-177. https://doi.org/10.1016/j.micpath.2019.01.002
  21. Liu W, Pang H, Zhang H, Cai Y. Biodiversity of lactic acid bacteria. Springer: the Netherlands. 2014; 103–203. https://doi.org/10.1007/978-94-017-8841-0_2
  22. Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H. The Continuing Story of Class IIa Bacteriocins. Microbiol Mol Biol Rev. 2006; 70(2):564–582. https://doi.org/10.1128/MMBR.00016-05
  23. Sun Z, Wang X, Zhang X, Wu H, Zou Y, Li P, et al. Class 17 III bacteriocin helveticin-M causes sublethal damage on target cells through impairment 18 of cell wall and membrane. J Ind Microbiol Biotechnol. 2018; 45(3):231–227. https://doi.org/10.1007/s10295-018-2008-6
  24. Diep D, Skaugen M, Salehian Z, Holo H, Nes IF. Common mechanisms of target cell recognition and immunity for class II bacteriocins. J Applied and Environmental Microbiology. 2007; 104(7):447–455. https://doi.org/10.1073/pnas.0608775104
  25. Parada JL, Caron CR, Medeiros ABP, Soccol CR. Bacteriocins from lactic acid 19 bacteria: Purification, properties and use as biopreservatives, Braz Arch Biol Technol. 2007; 50(3):512‒542. https://doi.org/10.1590/S1516-89132007000300018
  26. Belguesmia Y, Naghmouchi K, Chihib NE, Drider D, Class IIa bacteriocins: Current 8 knowledge and perspectives. Springer: New York; 2011. https://doi.org/10.1007/978-1-4419-7692-5_10
  27. Thompson JK, Collins MA, Mercer WD. Characterization of a proteinaceous antimicrobial produced by Lactobacillus helveticus CNRZ450. J Appl Bacteriology, 1996; 80(3):338–348. https://doi.org/10.1111/j.1365-2672.1996.tb03229.x
  28. Wayah SB, Philip K. Purification, characterization, mode of action, and enhanced production of Salivaricin mmaye 1, a novel bacteriocin from Lactobacillus salivarius SPW1 of human gut origin. Electron J Biotechnol. 2018; 35:39‒47. https://doi.org/10.1016/j.ejbt.2018.08.003
  29. Amrita RM, Kadirvelu J. Inhibiting bacterial colonization on catheters: Antibacterial and antibiofilm activities of bacteriocins from Lactobacillus plantarum SJ33. J Global Antimicrob Resist. 2019.
  30. Yan F, Polk DB. Probiotics and immune health. Curr Opin Gastroenterol. 2011; 27(6):496–501. https://doi.org/10.1097/MOG.0b013e32834baa4d
  31. Oganezova IA. [Intestinal microbiota and immunity: immunomodulatory effects of Lactobacillus rhamnosus GG]. RMJ. 2018; 9:39–44. Russian. https://doi.org/10.31350/postepyneonatologii/2018/1/PN2018002
  32. Maranduba CM da C, De Castro SBR, de Souza GT Rossato C, da Guia FC, Valente MA, et al. Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis. J Immunol Res. 2015; 931574. https://doi.org/10.1155/2015/931574
  33. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017; 46(4):562–576. https://doi.org/10.1016/j.immuni.2017.04.008
  34. Gury-BenAri M, Thaiss CF, Serafini N. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell. 2016; 166(5):1231– 1246. https://doi.org/10.1016/j.cell.2016.07.043
  35. Zhao K, Xie Q, Xu D, Guo Y, Tao X, Wei H, et al. Antagonistics of Lactobacillus plantarum ZDY2013 against Helicobacter pylori SS1 and its infection in vitro in human gastric epithelial AGS cells. J Bioscience and Bioengineering. 2018; 126(4):458–463. https://doi.org/10.1016/j.jbiosc.2018.04.003
  36. Wu Z, Pan D, Guo Y, Sun Y, Zeng X. Peptidoglycan diversity and anti-inflammatory capacity in Lactobacillus strains. Carbohydr Polym. 2015; 128:130–137. https://doi.org/10.1016/j.carbpol.2015.04.026
  37. Niibo M, Shirouchi B, Umegatani M, Morita Y, Ogawa A, Sakai F, et al. Probiotic Lactobacillus gasseri SBT2055 improves insulin secretion in a diabetic rat model. J Dairy Science. 2019; 102(2):997–1006. https://doi.org/10.3168/jds.2018-15203
  38. Yassour M, Lim MY, Yun HS, Sung J, Tickle TL, Song YM, et al. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Gend Med. 2016; 8:17. https://doi.org/10.1186/s13073-016-0271-6
  39. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016; 65(3):426–436. https://doi.org/10.1136/gutjnl-2014-308778
  40. Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014; 63(9):1513–1521. https://doi.org/10.1136/gutjnl-2014-306928
  41. Le KA, Li Y, Xu X, Yang W, Liu T, Zhao X, et al. Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population. Front Physiol. 2012; 3:496. https://doi.org/10.3389/fphys.2012.00496
  42. Rodriguez B, Prioult G, Hacini-Rachinel F, Moine D, Bruttin A, Ngom-Bru C, et al. Infant gut microbiota is protective against cow’s milk allergy in mice despite immature ileal T-cell response. FEMS Microbiol Ecol. 2012; 79(1):192–202. https://doi.org/10.1111/j.1574-6941.2011.01207.x
  43. Panzer AR, Lynch SV. Influence and effect of the human microbiome in allergy and asthma. Curr. Opin. Rheumatol. 2015; 27(4):373–380. https://doi.org/10.1097/BOR.0000000000000191
  44. Yng-Tzer J. Lin, Chein-Chin Chou, Chin-Ying S. Hsu Effects of Lactobacillus casei Shirota intake on caries risk in children. J Dental Sciences. 2017; 12(2):179–184. https://doi.org/10.1016/j.jds.2016.09.005
  45. Lei M, Guo C, Wang D, Zhang C, Hua L. The effect of probiotic Lactobacillus casei Shirota on knee osteoarthritis: a randomised double-blind, placebo-controlled clinical trial. Benef Microbes. 2017; 8(5):697–703. https://doi.org/10.3920/BM2016.0207
  46. Amdekar S, Kumar A, Sharma P, Singh R, Singh V. Lactobacillus protected bone da mage and maintained the antioxidant status of liver and kidney homogenates in female Wistar rats. Mol Cell Biochem. 2012; 368(1-2):155–165. https://doi.org/10.1007/s11010-012-1354-3
  47. Amdekar S, Singh V. Lactobacillus acidophilus maintained oxidative stress from repro ductive organs in collagen-induced arthritic rats. J Hum Reprod Sci. 2016; 9(1):41–46. https://doi.org/10.4103/0974-1208.178638
  48. Jiang M, Zhang F, Wan C, Xiong Y, Shah NP, Wei H, et al. Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk. J Dairy Sci. 2016; 99(3):1736–1746. https://doi.org/10.3168/jds.2015-10434
  49. Cerdó T, Ruíz A, Suárez A, Campoy C. Probiotic, Prebiotic, and Brain Development. Nutrients. 2017; 9(11):1247. https://doi.org/10.3390/nu9111247
  50. Tsai Y. Microbiota-gut-brain Axis and psychobiotics: Lactobacillus plantarum PS128 as an example. Conference Proceedings of IPC2016, Paper presented at the International Scientific Conference on Probiotics and Prebiotics, Budapest. 2016. p. 121. IPC2016.
  51. Kuna YM. Anti-Alzheimer Properties of Probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s Disease induced Albino Rats Nimgampalle. J Clin Diagn Res. 2017; 11(8):KC01–KC05.
  52. Akbari E, Asemi Z, Kakhaki RD, Bahmani F, Kouchaki E, Tamtaji OR, et al. Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Front. Aging Neurosci. 2016; 8:256. https://doi.org/10.3389/fnagi.2016.00256
  53. Liang S, Wang T, Hu X, Luo J, Li W, Wu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 2015; 310:561–77. https://doi.org/10.1016/j.neuroscience.2015.09.033
  54. Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E, et al. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome Psychoneuroendocrinology. 2013; 38(9):1738–1747. https://doi.org/10.1016/j.psyneuen.2013.02.008
  55. Smith CJ, Emge JR, Berzins K, Lung L, Khamishon R, Shah P, et al. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. Am J Physiol Gastrointest Liver Physiol. 2014; 307(8):G793–G802. https://doi.org/10.1152/ajpgi.00238.2014
  56. Kato-Kataoka A, Nishida K, Takada M, Suda K, Kawai M, Shimizu K, et al. Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Benef Microbes. 2016; 7(2):153–156. https://doi.org/10.3920/BM2015.0100
  57. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504:446–450. https://doi.org/10.1038/nature12721
  58. El Aidy S, Dinan TG, Cryan JF. Gut microbiota: The conductor in the orchestra of immune-neuroendocrine communication. Clin Ther. 2015; 37:954–967. https://doi.org/10.1016/j.clinthera.2015.03.002
  59. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015; 277:32–48. https://doi.org/10.1016/j.bbr.2014.07.027
  60. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci. USA. 2009; 106:3698–3703. https://doi.org/10.1073/pnas.0812874106
  61. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015; 161(2):264– 276. https://doi.org/10.1016/j.cell.2015.02.047
  62. Kwon HK, Kim GC, Kim Y, Hwang W, Jash A, Sahoo A, et al. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clin Immunol. 2013; 146:217–227. https://doi.org/10.1016/j.clim.2013.01.001
  63. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013; 74:720–726. https://doi.org/10.1016/j.biopsych.2013.05.001
  64. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013; 155:1451–1463. https://doi.org/10.1016/j.cell.2013.11.024
  65. Valeriano VDV, Balolong MP, Kang DK. Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiology. 2017; 122(3):554–567. https://doi.org/10.1111/jam.13364
  66. Yang L, Yuan X, Li J, Dong Z, Shao T. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresource Technology. 2019; 275(10):280–287. https://doi.org/10.1016/j.biortech.2018.12.067
  67. Lebeer S, VerhoevenTLA, Claes IJJ, Hertogh G.D., Vermeire S, Buyse J, et al. FISH analysis of Lactobacillus biofilms in the gastrointestinal tract of different hosts. Lett Appl Microbiol. 2011; 52(3):220–226. https://doi.org/10.1111/j.1472-765X.2010.02994.x
  68. Suchodolski JS. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. The Veterinary J. 2016; 215:30–37. https://doi.org/10.1016/j.tvjl.2016.04.011
  69. Grześkowiak Ł, Endo A, Beasley Sh, Salminen S. Microbiota and probiotics in canine and feline welfare. Anaerobe. 2015; 34:14–23. https://doi.org/10.1016/j.anaerobe.2015.04.002