Mikrobiol. Z. 2019; 81(6):110-130. Ukrainian.
doi: https://doi.org/10.15407/microbiolj81.06.110

Integrated Technologies of Microbial Synthesis of Several Final Products

Pirog T.P.1,2, Kliuchka L.V.1, Klymenko N.O.1, Shevchuk T.A.2, Iutynska G.O.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

In recent years, the interest of researchers to the technology of microbial synthesis of final multifunctional products, in particular, polyhydroxyalkanoates and surfactants, has increased. However, their industrial production is limited by high costs of the biosynthesis process. One of the approaches to solving this problem is the implementation of so-called integrated biotechnologies, in which simultaneously with the final product, practically valuable metabolites are synthesized, the high market value of which allows reduce the cost of obtaining the final product. The review contains literature data on the simultaneous microbial synthesis of polyhydroxyalkanoates, surfactants, pigments, enzymes, organic acids, exopolysaccharides, amino- and polyaminoacids, phytohormones and bacteriocins. The applications of the complex of practically important metabolites with different properties synthesized by one producer are much wider than monopreparations. Different localization of several metabolites (intracellular and extracellular) synthesized on inexpensive and available in large quantities industrial waste allows to realize of highly efficient wastefree biotechnology.

Keywords: simultaneous synthesis of several products, final metabolite, byproduct, microbial technologies.

Full text (PDF, in Ukrainian)

  1. Zeng W, Li W, Shu L, Yi J, Chen G, Liang Z. Non-sterilized fermentative co-production of poly(γ-glutamic acid) and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28. Bioresour Technol. 2013; 142:697−700. https://doi.org/10.1016/j.biortech.2013.05.020
  2. Que Y, Sun S, Xu L, Zhang Y, Zhu H. High-level coproduction, purification and characterization of laccase and exopolysaccharides by Coriolus versicolor. Food Chem. 2014; 159:208-13. https://doi.org/10.1016/j.foodchem.2014.03.063
  3. Nitschke M, Costa S, Contiero J. Rhamnolipids and PHAs: Resent reports on Pseudomonas – derived molecules of increasing industrial interest. Process Biochem. 2011; 46:621−30. https://doi.org/10.1016/j.procbio.2010.12.012
  4. Hori K, Marsudi S, Ichinohe R, Unno H. Simultaneous synthesis of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acid. Biochem Eng J. 2011; 53(2):196−202. https://doi.org/10.1016/j.bej.2010.10.011
  5. Krishnan S, Kaari M, Gautam RK, Singh PK, Sevugapperumal N, Sharma SK. Bacillus spp. for suppression of eggplant bacterial with pathogen in Andaman Islands: Isolation and characterization. Indian J Exp Biol. 2019; 57:131−37.
  6. de Castro AM, Castilho LR, Freire DM. Multivariate optimization and supplementation strategies for the simultaneous production of amylases, cellulases, xylanases, and proteases by Aspergillus awamori under solid-state fermentation conditions. Appl Biochem Biotechnol. 2015; 175(3):1588−1602. https://doi.org/10.1007/s12010-014-1368-2
  7. Sanchez Blanco A, Palacios Durive O, Batista Perez S, Diaz Guerra N. Simultaneous production of amylases and proteases by Bacillus subtilis in brewery wastes. Braz J Microbiol. 2016; 47(3):665−74. https://doi.org/10.1016/j.bjm.2016.04.019
  8. Colla E, Santos LO, Deamici K, Magagnin G, Venduscolo M, Costa JA. Simultaneous production of amyloglucosidase and exo-polygalacturonase by Aspergillus niger in a rotating drum reactor. Appl Biochem Biotechnol. 2017; 181(2):627−37. https://doi.org/10.1007/s12010-016-2237-y
  9. Perez KJ, Viana JD, Lopes FC, Pereira JQ, Dos Santos DM, Oliveira JS. Bacillus spp. isolated from puba as a source of biosurfactants and antimicrobial lipopeptides. Front Microbiol. 2017; 8:61. https://doi.org/10.3389/fmicb.2017.00061
  10. Liu C, Liu Y, Liao W, Wen Z, Chen S. Simultaneous production of nisin and lactic acid from cheese whey: optimization of fermentation conditions through statistically based experimental designs. Appl Biochem Biotechnol. 2004; 113(6):627−38. https://doi.org/10.1385/ABAB:114:1-3:627
  11. Kang Z, Du L, Kang J, Wang Y, Wang Q, Liang Q, et al. Production of succinate and polyhydroxyalkanoate from substrate mixture by metabolically engineered Escherichia coli. Bioresour Technol. 2011; 102(11):6600−4. https://doi.org/10.1016/j.biortech.2011.03.070
  12. Weselowski B, Nathoo N, Eastman AW, MacDonald J, Yuan ZC. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol. 2016; 16(1):244. https://doi.org/10.1186/s12866-016-0860-y
  13. Boudjeko T, Tchinda RA, Zitouni M, Nana JA, Lerat S, Beaulieu C. Streptomyces carneroonensis sp. nov., a geldanamycin producer that promotes Theobroma cacao growth. Microbes Environ. 2017; 32(1):24−31. https://doi.org/10.1264/jsme2.ME16095
  14. El-Sayed WS, Akhkha A, El-Naggar MY, Elbadry M. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front Microbiol. 2014; 5:651. https://doi.org/10.3389/fmicb.2014.00651
  15. Dutta J, Thakur D. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India. PLoS One. 2017; 12(8):e0182302. https://doi.org/10.1371/journal.pone.0182302
  16. Passari AK, Mishra VK, Singh G, Singh P, Kumar B, Gupta VK, et al. Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep. 2017; 7(1):11809. https://doi.org/10.1038/s41598-017-12235-4
  17. Srividya S, Thapa A, Bhat DV, Golmei K, Dey N. Streptomyces sp. 9p as effective biocontrol against chilli soilborne fungal phytopathogenes. Eur J Exp Biol. 2012; 2(1):163−73.
  18. Viayaraghavan P, Jeba Kumar S, Valan Arasu M, Al-Dhabi NA. Simultaneous production of commercial enzymes using agro industrial residues by statistical approach. J Sci Food Agric. 2019; 99(6):2685−96. https://doi.org/10.1002/jsfa.9436
  19. Bhange K, Chaturvedi V, Bhatt R. Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste. Biotechnol Rep (Amst). 2016; 10:94−104. https://doi.org/10.1016/j.btre.2016.03.007
  20. Hmidet N, Jemil N, Nasri M. Simultaneous production of alkaline amylase and biosurfactant by Bacillus methylotrophicus DCS1: application as detergent additive. Biodegradation. 2018. https://doi.org/10.1007/s10532-018-9847-8
  21. Urtuvia V, Villegas P, Gonzales M, Seeger M. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol. 2014; 70:208−13. https://doi.org/10.1016/j.ijbiomac.2014.06.001
  22. Pagliano G, Ventorino V, Panico A, Pepe O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels. 2017; 10:113. https://doi.org/10.1186/s13068-017-0802-4
  23. Kumar P, Kim BS. Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products Bioresour Technol. 2018; 269:544−56. https://doi.org/10.1016/j.biortech.2018.08.120
  24. Li T, Elhadi D, Chen GQ. Co-production of microbial polyhydroxyalkanoates with other chemicals. Metab Eng. 2017; 43(Pt A):29−36. https://doi.org/10.1016/j.ymben.2017.07.007
  25. Kumar P, Jun HB, Kim BS. Co-production of polyxydroxyalkanoates and carotenoids though bioconversation of glycerol by Paracoccus sp. strain LL1. Int J Biol Macromol. 2018; 107(Pt B):2552−8. https://doi.org/10.1016/j.ijbiomac.2017.10.147
  26. Ramachandran H, Amirul AA. Yellow-pigmented Cupriavidus sp., a novel bacterium capable of utilizing glycerine pitch for the sustainable production of P (3HB-co-4HB). J.Chem Technol Biotechnol. 2013; 88(6):1030−8. https://doi.org/10.1002/jctb.3928
  27. de Jesus Assis D, Gomes GV, da Cunha Pascoal DR, Pinho LS, Chaves LB, Druzian JI. Simultaneous biosynthesis of polyxydroxyalkanoates and extracellular polymeric substance (EPS) from crude glycerol from biodiesel production by different bacterial strains. Appl Biochem Biotechnol. 2016; 180(6):1110−27. https://doi.org/10.1007/s12010-016-2155-z
  28. Sukan A, Roy I, Keshavarz T. A strategy for dual biopolymer production of P (3HB) and γ-PGA. J Chem Technol Biotechnol. 2017; 92(7):1548−57. https://doi.org/10.1002/jctb.5259
  29. Bhattacharya S, Dubey S, Singh P, Shrivastava A, Mishra S. Biodegradable polymeric substances produced by a marine bacterium from a Surplus stream of the biodiesel industry. Bioengineering (Basel). 2016; 3(4). pii:E34. https://doi.org/10.3390/bioengineering3040034
  30. Wang, J, Yu, HQ. Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol. 2007; 75(4):871−8. https://doi.org/10.1007/s00253-007-0870-7
  31. Licciardello G, Ferraro R, Russo M, Strozzi F, Catara AF, Bella P, et al. Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioconversation. N Biotechnol. 2017; 37(Pt A):39−47. https://doi.org/10.1016/j.nbt.2016.07.006
  32. Shih IL, Shen MH, Van YT. Microbial synthesis of poly(ε-lysine) and its various applications. Bioresour Technol. 2006; 97(9):1148−59. https://doi.org/10.1016/j.biortech.2004.08.012
  33. Bekelis K, Valdes PA, Erkmen K, Leblond F, Kim A, Wilson BC et al. Quantitative and qualitive 5-amonolevulinic acid induced protoporphyrin IX fluorescence in skull base meningiomas. Neurosurg Focus. 2011; 30(5):E8. https://doi.org/10.3171/2011.2.FOCUS1112
  34. Liu S, Zhang G, Li X. Zhang J. Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol. 2014; 98(17):7349−57. https://doi.org/10.1007/s00253-014-5925-y
  35. Li T, Guo YY, Qiao GQ, Chen GQ. Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synth Biol. 2016; 5(11):1264−74. https://doi.org/10.1021/acssynbio.6b00105
  36. Zhang X, Zhang J, Xu J, Zhao Q, Wang Q, Qi Q. Engineering Escherichia coli for efficient coproduction of polyhydoxyalkanoates and 5-aminolevulinic acid. J Ind Microbiol Biotechnol. 2018; 45(1):43−51. https://doi.org/10.1007/s10295-017-1990-4
  37. Kang Z, Gao C, Wang Q, Liu H, Qi Q. A novel strategy for succinate and polyhydroxybutyrate co-productionin Escherichia coli. Bioresour Technol. 2010; 101(19):7675−8. https://doi.org/10.1016/j.biortech.2010.04.084
  38. Shamala TR, Vijayendra SV, Joshi GJ. Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67. Braz J Microbiol. 2012; 43(3):1094−102. https://doi.org/10.1590/S1517-83822012000300036
  39. Sreekanth MS, Vijayendra SV, Joshi GJ, Shamala TR. Effect of carbon and nitrogen sources on simultaneous production of α-amylase and green food packaging polymer by Bacillus sp. CFR-67. J Food Sci Technol. 2013; 50(2):404−8. https://doi.org/10.1007/s13197-012-0639-6
  40. Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr. 2019; 11:1−21. https://doi.org/10.1080/10408398.2019.1575791
  41. Wu M, Li G, Huang H, Chen S, Luo Y, Zhang W, et al. The simultaneous production of sphingan Ss and poly(R-3-xydroxybutyrate) in Sphingomonas sanxanigenes NX02. Int J Biol Macromol. 2015; 82:361−8. https://doi.org/10.1016/j.ijbiomac.2015.09.071
  42. Tohme S, Haciosmanoglu GG, Eroglu MS, Kasavi C, Genc S, Can ZS, et al. Halomonas smyrnensis as a cell factory for co-production of PHB and levan. Int J Biol Macromol. 2018; 118(Pt A):1238−46. https://doi.org/10.1016/j.ijbiomac.2018.06.197
  43. Saranya Devi E, Vijayendra SVN, Shamala TR. Exploration of rice bran, an agro-industry residue, for the production of intraand extra-cellular polymers by Sinorhizobium meliloti MTCC 100. Biocatal Agric Biotechnol. 2012; 1(1):80−4. https://doi.org/10.1016/j.bcab.2011.08.014
  44. Cheirsilp B, Suksawang S, Yeesang J, Boonsawang P. Co-production of functional exopolysaccharides and lactic acid by Lactobacillus kefiranofaciens originated from fermented milk, kefir. J Food Sci Tech. 2018; 55(1):331−40. https://doi.org/10.1007/s13197-017-2943-7
  45. Nakamori S. Early History of the Breeding of Amino Acid-Producing Strains. Adv Biochem Eng Biotechnol. 2017; 159:35−53. https://doi.org/10.1007/10_2016_25
  46. Liu Q, Ouyang SP, Kim J, Chen GQ. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum. J Biotechnol. 2007; 132(3):273−9. https://doi.org/10.1016/j.jbiotec.2007.03.014
  47. Jo SJ, Leong CR, Matsumoto K, Taguchi S. Dual production of poly(3-hydroxybutyrate) and glutamate using variable biotin concentrations in Corynebacterium glutamicum. J Biosci Bioeng. 2009; 107(4):409−11. https://doi.org/10.1016/j.jbiosc.2008.12.003
  48. Ma W, Wang J, Li Y, Yin L, Wang X. Poly(3-hydroxybutyrate-co-3-hydroxyvaleriate) co-produced with L-isoleucine in Corynebacterium glutamicum WM001. Microb Cell Fact. 2018; 17(1):93. https://doi.org/10.1186/s12934-018-0942-7
  49. Xu M, Qin J, Rao Z, You H, Zhang X, Yang T et al. Effect of polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation. Microb Cell Fact. 2016; 15. https://doi.org/10.1186/s12934-016-0414-x
  50. Gu P, Kang J, Yang F, Wang Q, Liang Q, Qi Q. The improved L-tryptophan production in recombinant Escherichia coli by expressing the polyhydroxybutyrate synthesis pathway. Appl Microbiol Biotechnol. 2013; 97(9):4121−7. https://doi.org/10.1007/s00253-012-4665-0
  51. Han G, Hu X, Wang X. Co-production of S-adenosyl-L-methionine and L-isoleucine in Corynebacterium glutamicum. Enzyme Microb Technol. 2015; 8:27−33. https://doi.org/10.1016/j.enzmictec.2015.06.003
  52. Jemil N, Ben Ayed H, Hmidet N, Nasri M. Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their application in enhancing solubility of hydrocarbon. World J Microbiol Biotechnol. 2016; 32(11):175. https://doi.org/10.1007/s11274-016-2132-2
  53. Hu X, Cheng T, Liu J. A novel Serattia sp. ZS6 isolate derived from petrolenum sludge secrets biosurfactants and lipase in medium with olive oil as a sole source. AMB Express. 2018; 8(1):165. https://doi.org/10.1186/s13568-018-0698-9
  54. Zarinviarsagh M, Ebrahimipour G, Sadeghi H. Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application. Lipids Health Dis. 2017; 16(1):177. https://doi.org/10.1186/s12944-017-0565-8
  55. Ebrahimipour G, Sadeghi H, Zarinviarsagh M. Statistical Methodologies for the Optimization of Lipase and Biosurfactant by Ochrobactrum intermedium Strain MZV101 in an Identical Medium for Detergent Applications. Molecules. 2017; 22(9). pii: E1460. https://doi.org/10.3390/molecules22091460
  56. de Carvalho-Goncalves LCT, Gorlach-Lira K. Lipases and biosurfactants production by the newly isolated Burkholderia sp. Braz J Biol Sci. 2018; 5(9):57−68. https://doi.org/10.21472/bjbs.050906
  57. Colla LM, Rizzardi J, Pinto MH, Reinehr CO, Bertolin TE, Costa JA. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresour Technol. 2010; 101(21):8308−14. https://doi.org/10.1016/j.biortech.2010.05.086
  58. Kourmentza C, Costa J, Azevedo Z, Servin C, Grandfils C, De Freitas V, Burkholderia thailandensis as a microbial cell factory for the bioconversation of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresour Technol. 2018; 247:829−37. https://doi.org/10.1016/j.biortech.2017.09.138
  59. Pirog T, Leonova N, Shevchuk T, Savenko I, Iutinska G. [Synthesis of phytohormones bacteria of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii IMV B-7405 – producers of surface-active substances]. Proc Nat Acad Sci Belarus. Biological series, 2016; 1:90–5. Russian.
  60. Pacwa-Płociniczak M, Płociniczak T, Iwan J, Żarska M, Chorążewski M, Dzida M, et al. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. J Environ Manage. 2016; 168:175−84. https://doi.org/10.1016/j.jenvman.2015.11.058
  61. Rodriguez N, Salgado JM, Cortes S, Dominguez JM. Alternatives for biosurfactants and bacteriocins extraction from Lactococcus lactis cultures under different pH conditions. Lett Appl Microbiol. 2010; 51(2):226−33. https://doi.org/10.1111/j.1472-765X.2010.02882.x
  62. Sharma D, Singh Saharan B. Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int J Microbiol. 2014; 2014:698713. https://doi.org/10.1155/2014/698713
  63. Cagri-Mehmetoglu A, Kusakli S, van de Venter M. Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium. J Dairy Sci. 2012; 95(7):3643−9. https://doi.org/10.3168/jds.2012-5385
  64. Liang TW, Wu CC, Cheng WT, Chen YC, Wang CL, Wang IL, et al. Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl Biochem Biotechnol. 2014;172(2):933−50. https://doi.org/10.1007/s12010-013-0568-5
  65. Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, et al. Biotechnological processes in microbial amylase production. Biomed Res Int. 2017; 2017:1272193. https://doi.org/10.1155/2017/1272193
  66. Su C, Xiang Z, Liu Y, Zhao X, Sun Y, Li Z, et al. Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25 that simultaneously produces prodigiosin and serrawetin W2. BMC Genomics. 2016; 17(1):865. https://doi.org/10.1186/s12864-016-3171-7
  67. Su C, Liu Y, Sun Y, Li Z. Complete genome sequence of Serratia sp. YD25 (KCTC 42987) presenting strong antagonistic activities to various pathogenic fungi and bacteria. J Biotechnol. 2017; 245:9−13. https://doi.org/10.1016/j.jbiotec.2017.01.011
  68. Chayabutra C, Ju L.-K. Polyhydroxyalkanoic acids and rhamnolipids are synthesized sequentially in hexadecane fermentation by Pseudomonas aeruginosa ATCC 10145. Biotechnol Progr. 2001; 17(3):419−23. https://doi.org/10.1021/bp010036a
  69. Hori K, Marsudi S, Unno H. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Biotechnol Bioeng. 2002; 78(6):699−707. https://doi.org/10.1002/bit.10248
  70. Soberón-Chávez G, Aguirre-Ramírez M, Sánchez R. The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production. J Ind Microbiol Biotechnol. 2005; 32(11):675−7. https://doi.org/10.1007/s10295-005-0243-0
  71. Marsudi S, Unno H, Hori K. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2008;78(6):955−61. https://doi.org/10.1007/s00253-008-1388-3
  72. Costa SG, Lépine F, Milot S, Déziel E, Nitschke M, Contiero J. Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol. 2009; 36(8):1063−72. https://doi.org/10.1007/s10295-009-0590-3
  73. Pantazaki AA, Papaneophytou CP, Lambropoulou DA. Simultaneous polyhydroxyalkanoates and rhamnolipids production by Thermus thermophilus HB8. AMB Express. 2011; 1(1):17. https://doi.org/10.1186/2191-0855-1-17
  74. Rashid NF, Azemi MA, Amirul A, Wahid A, Bhubalan K. Simultaneous production of biopolymer and biosurfactant by genetically modified Pseudomonas aeruginosa UMTKB-5. Int Proc Chem Biol Environ. Eng. 2015; 90:3−8.
  75. Pirog TP, Leonova NO, Shevchuk TA, Panasuk EV, Beregovaya KA, Iutynskaya GA. [Synthesis of phytohormones by Nocardia vaccinii IMV B-7405 − producer of surfactants]. Mikrobiol Z. 2015; 77(6):21−30. Russian. https://doi.org/10.15407/microbiolj77.06.021
  76. Pirog TP, Iutynska GO, Leonova NO. Beregova KA, Shevchuk TA. Microbial synthesis of phytohormones. Biotech Acta. 2018; 11(1):5−24. https://doi.org/10.15407/biotech11.01.005
  77. Jayakumar A, Krishna A, Mohan M, Nair IC, Radhakrishnan EK. Plant growth enhancement, disease resistance, and elemental modulatory effects of plant probiotic endophytic Bacillus sp. Fcl1. Probiotics Antimicrob Proteins. 2018. https://doi.org/10.1007/s12602-018-9417-8
  78. Sabaté DC, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiol Res. 2018; 211:21−30. https://doi.org/10.1016/j.micres.2018.04.003
  79. Wu T, Xu J, Xie W, Yao Z, Yang H, Sun C, et al. Pseudomonas aeruginosa L10: a hydrocarbon-degrading, biosurfactant-producing and plant-growth-promotion endophytic bacterium isolated from a reed (Phragmites australis). Front Microbiol. 2018; 9:1087. https://doi.org/10.3389/fmicb.2018.01087
  80. Baindara P, Mandal SM, Chawla N, Singh PK, Pinnaka AK, Korpole S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express. 2013; 3(1):2. https://doi.org/10.1186/2191-0855-3-2