Mikrobiol. Z. 2019; 81(5):98-113. Ukrainian.
doi: https://doi.org/10.15407/microbiolj81.05.098

Biodiversity and Functional Properties of Endophytic Prokaryotes

Iutynska G.O.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

The study of endophytic bacteria is currently a relevant area in microbiology, expanding our knowledge about the evolution of the relationships between microorganisms and plants, of the plant microbiome, as well as opens new perspectives for the practical use of active strains for increasing the productivity of agricultural crops. The review provides information on the distribution and biodiversity of endophytic prokaryotes in various plants, describes the types and mechanisms of relationships between endophytic bacteria and plants, exhibits their role in plant growth promotion, improving mineral nutrition and increasing resistance to biotic and abiotic factors. Particular attention is paid to the possibility of the practical use of endophytic bacteria. The results of author’s researches, confirming the effectiveness of the use of endophytic-rhizobial inoculation of soybean seeds to increase plant productivity and improve the quality of the obtained crops are shown.

Keywords: endophytes, biodiversity, microbiom, microbial-plant interactions, biologically active metabolites, crops.

Full text (PDF, in Ukrainian)

  1. Galippe V. Note sur la presence de microorganismes dans les t issus vegetaux. CRScience Soc Biol Fil. 1887; 39:410–16.
  2. Chelius MK, Triplett EW. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol. 2001; 41:252–63. https://doi.org/10.1007/s002480000087
  3. Busby PE, Ridout M, Newcombe G. Fungal endophytes: modifiers of plant disease. Plant Mol Biol. 2016; 90:645–55. https://doi.org/10.1007/s11103-015-0412-0
  4. Taffner J, Erlac A, Bragina A, Berg C, Moissl-Eichinger C, Berg G. What is the Role of Archaea in Plants? New Insights from the Vegetation of Alpine Bogs. mSphere. 2018; 3 (3):e00122-18122-18. https://doi.org/10.1128/mSphere.00122-18
  5. Trémouillaux-Guiller J, Rohr T, Rohr R, Huss VAR. Discovery of an endophytic alga in Ginkgo biloba. Am J Bot. 2002; 89:727–33. https://doi.org/10.3732/ajb.89.5.727
  6. Müller P, Döring M. Isothermal DNA amplification facilitates the identification of a broad spectrum of bacteria, fungi and protozoa in Eleutherococcus sp. Plant tissue cultures. Plant Cell Tissue Organ Cult. 2009; 98:35–45. https://doi.org/10.1007/s11240-009-9536-8
  7. de Bary A. Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Handbuch der Physiologischen Botanik. Herausgegeben von W. Hofmeister. Leipzig: Verlag von W.Engelmann; 1886; 338.
  8. Hallmann JA, Quadt-Hallmann WF, Mahaffee, Kloepper JW. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997; 43(10): 895–914. https://doi.org/10.1139/m97-131
  9. Stone JK, Bacon CW, White JF. An overview of endophytic microbes: Endophytism defined. In: Bacon CW, White JF, editors. Microbial Endophytes. New York Basel: Marcel Dekker; 2000. p. 29–33.
  10. Garbeva P, van Overbeek LS, vanVuurde JWL, van Elsas JD. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNAbased PCR fragments. Microb Ecol. 2001; 41:369–83. https://doi.org/10.1007/s002480000096
  11. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015; 79(3):293–310. https://doi.org/10.1128/MMBR.00050-14
  12. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaaat EV, Schulze-Lefert. Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol. 2013; 64:807–38. https://doi.org/10.1146/annurev-arplant-050312-120106
  13. Scherling C, Ulrich K, Ewald D, Weckwerth W. A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. Mol Plant-Microbe Interact. 2009; 22 (8):1032–7. https://doi.org/10.1094/MPMI-22-8-1032
  14. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, at al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact. 2012; 25(1):28–36. https://doi.org/10.1094/MPMI-08-11-0204
  15. Hardoim PR, van Overbeek LS, Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology. 2008; 16(10):463–71. https://doi.org/10.1016/j.tim.2008.07.008
  16. Nelson EB. Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol. 2004; 42:271–309. https://doi.org/10.1146/annurev.phyto.42.121603.131041
  17. Santoyoa G, Moreno-Hagelsiebb G, Orozco-Mosquedac GC, Glickc BL. Plant growthpromoting bacterial endophytes. Microbiol Research. 2016; 183:92–9. https://doi.org/10.1016/j.micres.2015.11.008
  18. Johnston-Monje D, Raizada MN. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE. 2011; 6:e20396.
  19. Glick BR. Beneficial Plant-Bacterial Interactions. Springer: Heidelberg; 2015. https://doi.org/10.1007/978-3-319-13921-0
  20. Iutynska GO, Biliavska LO, Kozyritska VE. Development of strategy for the new environmentally friendly multifunctional bioformulations based on soil streptomycetes. Mikrobiol Z. 2017; 79(1):22–33. https://doi.org/10.15407/microbiolj79.01.022
  21. Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Alessio Giacomini, et al. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol. 2001; 28:845–70. https://doi.org/10.1071/PP01069
  22. Köberl M, Erlacher A, Ramadan EM, El-Arabi TF, Müller H, Bragina A, at al. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity. FEMS Microbiol Ecol. 2016; 92(2):1–11. https://doi.org/10.1093/femsec/fiv166
  23. Elvira-Recuenco M, vanVuurde JWL. Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol. 2000; 46:036-41. https://doi.org/10.1139/w00-098
  24. Araujo WL, Marcon J, Maccheroni W Jr, van Elsas JD, van Vuurde JWL, Azevedo JL. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Env Microbiol. 2002; 68:4906–14. https://doi.org/10.1128/AEM.68.10.4906-4914.2002
  25. Dudeja SS1, Giri R, Saini R, Suneja-Madan P, Kothe E. Interaction of endophytic microbes with legumes. J Basic Microbiol. 2012; 52(3):248–60. https://doi.org/10.1002/jobm.201100063
  26. Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R. Production of indole-3-acetic acid and gibberellins A(1) and A(3) by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined culture media. Plant Growth Regul. 2012; 24:7–11. https://doi.org/10.1023/A:1005964031159
  27. Suzuki S, He YX, Oyaizu H. Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol. 2003; 47:138–43. https://doi.org/10.1007/s00284-002-3968-2
  28. Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Env Microbiol. 2002; 68:3795–801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  29. Merzaeva OV, Shirokikh IG. The production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol. 2010; 46:44–50. https://doi.org/10.1134/S0003683810010072
  30. Sziderics AH, Asche FR, Rognitz FT, Essitsch AS, Wilhelm EW. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol. 2007; 53:1195–202. https://doi.org/10.1139/W07-082
  31. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, et al. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol. 2001; 47:642–52. https://doi.org/10.1139/w01-062
  32. Hill A, Crossman SM. Characterization of N2-fixing bacteria associated with sweet potato roots. Can J Microbiol. 1983; 2:860–62. https://doi.org/10.1139/m83-139
  33. Verma SC, Singh A, Chowdhury SP, Tripathi AK. Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Letters. 2004; 26(5):25–29. https://doi.org/10.1023/B:BILE.0000018263.94440.ab
  34. Hurek T, Handley LL, Reinhold-Hurek B, Piché Y. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microbe Interact. 2002; 15(3):233–42. https://doi.org/10.1094/MPMI.2002.15.3.233
  35. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol. 2007; 76:1145–52. https://doi.org/10.1007/s00253-007-1077-7
  36. Taurian T, Ibáñez F, Angelini J, Tonelli ML, Fabr A. Endophytic Bacteria and Their Role in Legumes Growth Promotion. In: Maheshwari Dinesh K, editor. Bacteria in Agrobiology: Plant Probiotics. Berlin Heidelberg: Springer-Verlag; 2012. p 141–68. https://doi.org/10.1007/978-3-642-27515-9_8
  37. Pieterse C, Zamioudis C, Berendsen RL, Weller DM, van Wees SC, Bakker PA. Induced systemic resistance by beneficial microbes. Ann Rev Phytopathol. 2014; 52: 347–75. https://doi.org/10.1146/annurev-phyto-082712-102340
  38. Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Ann Rev Phytopathol. 2011; 49:317–43. https://doi.org/10.1146/annurev-phyto-073009-114447
  39. Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E A, Kauffmann S, et al. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot. 2010; 62(2):595–603. https://doi.org/10.1093/jxb/erq291
  40. van Loon LC, Bakker PA, van der Heijdt WH, Wendehenne D, Pugin A. Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant Microbe Interact. 2008; 21(12):1609–21. https://doi.org/10.1094/MPMI-21-12-1609
  41. Duffy BK, Défago G. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol. 1999; 65(6):2429–38.
  42. Rybakova D, Cernava T, Koberl M, Liebminger S, Etemadi M, Berg G. Endophytesassisted biocontrol: nove linsights in ecology and the mode of action of Paenibacillus. Plant Soil. 2016; 405:125–40. https://doi.org/10.1007/s11104-015-2526-1
  43. Ramesh R, Joshi AA, Ghanekar MP. Pseudomonads: Major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol. 2009; 25(1):47–55. https://doi.org/10.1007/s11274-008-9859-3
  44. Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, et al. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiol. 2002; 148:2675–85. https://doi.org/10.1099/00221287-148-9-2675
  45. Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, et al. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiol. 2004; 150:785–93. https://doi.org/10.1099/mic.0.26645-0
  46. Ding L, Maier A, Fiebig H-H, Lin W-H, Hertweck C. A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem. 2011; 9(11):4029–31. https://doi.org/10.1039/c1ob05283g
  47. Timmusk S, El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, at al. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PloS One. 2014; 9(5):e96086. https://doi.org/10.1371/journal.pone.0096086
  48. Jha Y, Subramanian RB, Patel S. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plantarum. 2011; 33:797–802. https://doi.org/10.1007/s11738-010-0604-9
  49. Cohen AC, Travaglia CN, Bottini R, Piccoli PN. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the all eviation of drought effects in maize. Botany. 2009; 87(5):455–62. https://doi.org/10.1139/B09-023
  50. Grover M, Madhubala R, Ali SZ, Yadav SK, Venkateswarlu B. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum undermoisture stress conditions. J Basic Microbiol. 2014; 54(9):951–61. https://doi.org/10.1002/jobm.201300250
  51. Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R. Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plantarum. 2011; 33(1):203–9. https://doi.org/10.1007/s11738-010-0539-1
  52. Vigani G, Rolli E, Marasco R, Dell’Orto M, Michoud G, Soussi A, at al. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+-pumping pyrophosphatase in pepper plants. Environ Microbiol. 2018; 21(9):3212-28. https://doi.org/10.1111/1462-2920.14272
  53. Goloborodko S, Iutynska G, Tytova L, Dubynska O. [Agrobiological bases for increasing the efficiency of legume-rhizobial symbiosis of soybeans]. AgroPerspective. 2019; 4(222):84–94. Ukrainian.
  54. Joe MM, Islam MD, Karthikeyan B, Bradeepa K, Sivakumaar PK, Sa T. Resistance responses of rice to rice blast fungus after seed treatment with the endophytic Achromobacter xylosoxidans AUM54 strains. Crop Prot. 2012; 42:141–8. https://doi.org/10.1016/j.cropro.2012.07.006
  55. Montanez A, Rodriguez Blanco A, Barlocco C, Beracochea M. Characterization of cultivable putative plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol. 2012; 58:21–8. https://doi.org/10.1016/j.apsoil.2012.02.009
  56. Sturz AV, Christie BR, Matheson BG, Nowak J. Biodiversity of endophytic bacteria which colonizered clover nodules, roots, stems and foliage and their influence on hostgrowth. Biol Fertil Soils. 1997; 25(1):13–19. https://doi.org/10.1007/s003740050273
  57. Saini R, Kumar, Dudeja SS, Pathak DV. Beneficial Effects of Inoculation of Endophytic Bacterial Isolates from Roots and Nodules in Chickpea. Int J Curr Microbiol App Sci. 2015; 4(10):207–21.
  58. Stajkovic O, Delic D, Josic D, Kuzmanovic D, Rasulic N, Knezevic-Vukcevic J. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth promoting bacteria. Romanian Biotechnol Letters. 2011; 16 (1):5919–26.
  59. Brovko IS, Tytova LV, Iutynska GO. [Influence of endophytic soybean bacteria onthe rhizobium-soybean symbiosis and rhizosphere microbial community]. Microbiol Biotechnol. 2015; 4:36–45. Ukrainian.