Mikrobiol. Z. 2019; 81(3):84-104. Ukrainian.
doi: https://doi.org/10.15407/microbiolj81.03.084

Interrelation of Chemical Composition and Biological Properties of Microbial Surfactants

Pirog T.P.1,2, Kliuchka L.V.1, Shevchuk T.A.2, Muchnyk F.V.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Microbial surfactants are products of multifunctional application, however, their composition and properties may change under different cultivation conditions of producers.
The review presents literature data and its own experimental researches on dependence of the antimicrobial activity of surfactants on the chemical composition, as well as on the influence of cultivation conditions on the properties of final product. Analysis of literature data showed that antibacterial and antifungal activity of lipopeptides depends on the size and composition of the peptide component, conformation and length of the acyl chain; rhamnolipids-ratio of mono- and dirhamnolipid in the complex; sophorolipids-ratio of lactone and non-lactone forms of these surfactants. According to the literature, the main approaches to the regulation of the biological properties of microbial surfactants are their post-fermentation chemical modification, as well as the improvement of producer strains by methods of metabolic and genetic engineering. The results of our own research indicate that the identification of potential activators and/or inhibitors of key enzymes of biosynthesis of components responsible for certain properties, followed by appropriate modification of medium cultivation composition allows to regulate properties of final product.

Keywords: lipopeptides, rhamnolipids, sophorolipids, antimicrobial and antiadhesive activity, cultivation conditions, chemical composition.

Full text (PDF, in Ukrainian)

  1. Santos DK, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci. 2016; 17(3):401. https://doi.org/10.3390/ijms17030401
  2. Mnif I, Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J Sci Food Agric. 2016; 96(13):4310−20. https://doi.org/10.1002/jsfa.7759
  3. De Almeida DG, Soares Da Silva RC, Luna JM, Rufino RD, Santos VA, Banat IM, et al. Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol. 2016; 7:1718. https://doi.org/10.3389/fmicb.2016.01718
  4. Pirog TP, Sidor IV, Lutsai DA. Calcium and magnesium cations influence on antimicrobial and antiadhesive activity of Acinetobacter calcoaceticus IMV B-7241 surfactants. Biotechnologia acta. 2016; 9(6):50−7. https://doi.org/10.15407/biotech9.06.050
  5. Pirog TP, Nikituk LV, Shevchuk TA. [Influence of divalent cations on synthesis of Nocardia vaccinii IMV B-7405 surfactants with high antimicrobial and anti-adhesion activity]. Mikrobiol Z. 2017; 79(5):13-22. Ukrainian. https://doi.org/10.15407/microbiolj79.05.013
  6. Pirog TP, Shevchuk TA, Petrenko NM, Paliichuk OI, Iutynska GO. [Influence of Cultivation Conditions of Rhodococcus erythropolis IMV Ac-5017 on the Properties of Synthesized Surfactants]. Mikrobiol Z. 2018; 80(4):13-27. Ukrainian. https://doi.org/10.15407/microbiolj80.04.013
  7. Kim PI, Ryu J, Kim YH, Chi YT. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol. 2010; 20(1):138-45.
  8. Velho RV, Medina LF, Segalin J, Brandelli A. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiol (Praha). 2011; 54(4):279-303. https://doi.org/10.1007/s12223-011-0056-7
  9. Sharma D, Mandal SM, Manhas RK. Purification and characterization of a novel lipopeptide from Streptomyces amritsarensis sp. nov. active against methicillin-resistant Staphylococcus aureus. AMB Express. 2014; 4:50. https://doi.org/10.1186/s13568-014-0050-y
  10. Mandal SM, Sharma S, Pinnaka AK, Kumari A, Korpole S. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol. 2013; 13:152. https://doi.org/10.1186/1471-2180-13-152
  11. Mandal SM, Barbosa AE, Franco OL. Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv. 2013; 31(5):338−45. https://doi.org/10.1016/j.biotechadv.2013.01.004
  12. Zhihui X, Jiahui S, Bing L, Xin Y, Qirong S, Ruifu Z. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol. 2013; 79(3):808−15. https://doi.org/10.1128/AEM.02645-12
  13. Singh AK, Rautela R, Cameotra SS. Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb Cell Fact. 2014; 13:67. https://doi.org/10.1186/1475-2859-13-67
  14. Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008; 16(3):115-25. https://doi.org/10.1016/j.tim.2007.12.009
  15. Götze S, Herbst-Irmer R, Klapper M, Görls H, Schneider KRA, Barnett R, et al. Structure, biosynthesis, and biological activity of the cyclic lipopeptide anikasin. ACS Chem Biol. 2017; 12(10):2498-502. https://doi.org/10.1021/acschembio.7b00589
  16. Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int. 2015; 2015:473050. https://doi.org/10.1155/2015/473050
  17. Tabbene O, Kalai L, Ben Slimene I, Karkouch I, Elkahoui S, Gharbi A, et al. Anticandida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Microbiol Lett. 2011; 316(2):108-14. https://doi.org/10.1111/j.1574-6968.2010.02199.x
  18. Tareq FS, Lee MA, Lee HS, Lee JS, Lee YJ, Shin HJ. Gageostatins A-C, antimicrobial linear lipopeptides from a marine Bacillus subtilis. Ma. Drugs. 2014; 12(2):871-85. https://doi.org/10.3390/md12020871
  19. Ramachandran R, Shrivastava M, Narayanan NN, Thakur RL, Chakrabarti A, Roy U. Evaluation of antifungal efficacy of three new cyclic lipopeptides of the class bacillomycin from Bacillus subtilis RLID 12.1. Antimicrob Agents Chemother. 2018; 62(1):e01457-17. https://doi.org/10.1128/AAC.01457-17
  20. Asari S, Ongena M, Debois D, De Pauw E, Chen K, Bejai S, et al. Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides. Ann Bot. 2017, 120(4):551-62. https://doi.org/10.1093/aob/mcx089
  21. Ma Z, Geudens N, Kieu NP, Sinnaeve D, Ongena M, Martins JC, et al. Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front Microbiol. 2016; 7:382. https://doi.org/10.3389/fmicb.2016.00382
  22. Li XY, Mao ZC, Wang YH, Wu YX, He YQ, Long CL. Diversity and active mechanism of fengycin-type cyclopeptides from Bacillus subtilis XF-1 against Plasmodiophora brassicae. J Microbiol Biotechnol. 2013; 23(3):313-20. https://doi.org/10.4014/jmb.1208.08065
  23. Huang E, Yang X, Zhang L, Moon SH, Yousef AE. New Paenibacillus strain produces a family of linear and cyclic antimicrobial lipopeptides: cyclization is not essential for their antimicrobial activity. FEMS Microbiol Lett. 2017; 364(8). https://doi.org/10.1093/femsle/fnx049
  24. Baindara P, Mandal SM, Chawla N, Singh PK, Pinnaka AK, Korpole S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express. 2013; 3(1). https://doi.org/10.1186/2191-0855-3-2
  25. Zhou Z, Liu F, Zhang X, Zhou X, Zhong Z, Su H, et al. Cellulose-dependent expression and antibacterial characteristics of surfactin from Bacillus subtilis HH2 isolated from the giant panda. PLoS One. 2018; 13(1):e0191991. https://doi.org/10.1371/journal.pone.0191991
  26. Cortés-Sánchez Ade J, Hernández-Sánchez H, Jaramillo-Flores ME. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res. 2013; 168(1):22-32. https://doi.org/10.1016/j.micres.2012.07.002
  27. Vollbrecht E, Rau U, Lang S. Microbial conversion of vegetable oils into surface-active di-, tri-, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Lipid Fett. 1999; 101(10):389-94. https://doi.org/10.1002/(SICI)1521-4133(199910)101:10<389::AID-LIPI389>3.0.CO;2-9
  28. Pinazo A, Infante MR, Casals M, Garcı'a F, Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001; 17(5):1367-71. https://doi.org/10.1021/la0011735
  29. Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, et al. Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotechnol. 2013; 170(3):676-89. https://doi.org/10.1007/s12010-013-0225-z
  30. Janek T, Lukaszewicz M, Krasowska A. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids Surf B Biointerfaces. 2013, 110:379-86. https://doi.org/10.1016/j.colsurfb.2013.05.008
  31. Das P, Yang XP, Ma LZ. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. Front Microbiol. 2014; 5:696.
  32. Ohlendorf B, Lorezen W, Kehraus S, Krick A, Bode HB, König GM. Myxotyrosides A and B, unusual rhamnosides from Myxococcus sp. J Nat Prod. 2009; 72(1):82-6. https://doi.org/10.1021/np8005875
  33. Čejková A, Schreiberová O, Jezdik R, Chudoba J, Jirku V, Řezanka T. Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa as producers of rhamnolipids. J Biotechnol. 2014; 185:S119-S120. https://doi.org/10.1016/j.jbiotec.2014.07.409
  34. Díaz De Rienzo MA, Kamalanathan ID, Martin PJ. Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC9027 using foam fractionation. Process Biochem. 2016; 51(7):820-7. https://doi.org/10.1016/j.procbio.2016.04.007
  35. Paulino BN, Pessôa MG, Mano MC, Molina G, Neri-Numa IA, Pastore GM. Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol. 2016; 100(24):10265-93. https://doi.org/10.1007/s00253-016-7980-z
  36. Raza ZA, Khalid ZM, Banat IM. Characterization of rhamnolipids produced by a Pseudomonas aeruginosa mutant strain grown on waste oils. J Environ Sci Health A. 2009; 44(13):1367-73. https://doi.org/10.1080/10934520903217138
  37. Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol. 2015; 177:87-93. https://doi.org/10.1016/j.biortech.2014.11.069
  38. Rudden M, Tsauosi K, Marchant R, Banat IM, Smyth TJ. Development and validation of an ultra-performance liquid chromatography tandem mass spectrometry (UPLCMS/MS) method for the quantitative determination of rhamnolipid congeners. Appl Microbiol Biotechnol. 2015; 99(21):9177-87. https://doi.org/10.1007/s00253-015-6837-1
  39. Zhu K, Rock CO. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the betahydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol. 2008; 190(9):3147-54. https://doi.org/10.1128/JB.00080-08
  40. Ndlovu T, Rautenbach M, Khan S, Khan W. Variants of lipopeptides and glycolipids produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa cultured in different carbon substrates. AMB Express. 2017; 7(1):109. https://doi.org/10.1186/s13568-017-0367-4
  41. Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. N Biotechnol. 2017; 36:26-36. https://doi.org/10.1016/j.nbt.2016.12.009
  42. Rodrigues AI, Gudiña EJ, Teixeira JA, Rodrigues LR. Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Sci Rep. 2017; 7(1):12907. https://doi.org/10.1038/s41598-017-13424-x
  43. Aleksic I, Petkovic M, Jovanovic M, Milivojevic D, Vasiljevic B, Nikodinovic-Runic J, et al. Anti-biofilm properties of bacterial di-rhamnolipids and their semisynthetic amide derivatives. Front Microbiol. 2017; 8:2454. https://doi.org/10.3389/fmicb.2017.02454
  44. Oliveira MR, Magri A, Baldo C, Camilios-Neto D, Minucelli T, Celligoi M. Sophorolipids a promising biosurfactant and its applications. Int J Adv Biotechnol Res. 2015; 6:161-74.
  45. Ashby RD, Nuñez A, Solaiman DKY, Foglia TA. Sophorolipid biosynthesis from a biodiesel co-product stream. JAOCS. 2005; 82(9):625−30. https://doi.org/10.1007/s11746-005-1120-3
  46. Borsanyiova M, Patil A, Mukherji R, Prabhune A, Bopegamage S. Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiol (Praha). 2016; 61(1):85-9. https://doi.org/10.1007/s12223-015-0413-z
  47. Dengle-Pulate V, Chandorkar P, Bhagwat S, Prabhune AA. Antimicrobial and SEM studies of sophorolipids synthesized using lauryl alcohol. J Surfactant Deterg. 2014; 17(3):543-52. https://doi.org/10.1007/s11743-013-1495-8
  48. Zhang X, Ashby R, Solaiman DK, Uknalis J, Fan X. Inactivation of Salmonella spp. and Listeria spp. by palmitic, stearic, and oleic acid sophorolipids and thiamine dilauryl sulfate. Front Microbiol. 2016; 7:2076. https://doi.org/10.3389/fmicb.2016.02076
  49. Morya VK, Park JH, Kim TJ, Jeon S, Kim EK. Production and characterization of low molecular weight sophorolipid under fed-batch culture. Bioresour Technol. 2013; 143:282-8. https://doi.org/10.1016/j.biortech.2013.05.094
  50. Solaiman DK, Ashby RD, Birbir M, Caglayan P. Antibacterial activity of sophorolipids produced by Candida bombicola on gram-positive and gram-negative bacteria isolated from salted hides. JALCA. 2016; 111:358-64.
  51. Sleiman JN, Kohlhoff SA, Roblin PM, Wallner S, Gross R, Hammerschlag MR, et al. Sophorolipids as antibacterial agents. Ann Clin Lab Sci. 2009; 3(1):60-3.
  52. Ribeiro IA, Bronze MR, F Castro M, Ribeiro MH. Selective recovery of acidic and lactonic sophorolipids from culture broths towards the improvement of their therapeutic potential. Bioprocess Biosyst Eng. 2016; 39(12):1825−37. https://doi.org/10.1007/s00449-016-1657-y
  53. Chong H, Li Q. Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact. 2017; 16(1):137. https://doi.org/10.1186/s12934-017-0753-2
  54. Tiso T, Zauter R, Tulke H, Leuchtle B, Li WJ, Behrens B, et al. Designer rhamnolipids by reduction of congener diversity: production and characterization. Microb Cell Fact. 2017; 16(1):225. https://doi.org/10.1186/s12934-017-0838-y
  55. Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, et al. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol. 2017; 101(7):2865-78. https://doi.org/10.1007/s00253-016-8041-3
  56. Wittgens A, Santiago-Schuebel B, Henkel M, Tiso T, Blank LM, Hausmann R, et al. Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida − a step forward to tailor-made rhamnolipids. Appl Microbiol Biotechnol. 2018;102(3):1229-1239. https://doi.org/10.1007/s00253-017-8702-x
  57. Roelants SL, Ciesielska K, De Maeseneire SL, Moens H, Everaert B, Verweire S, et al. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol Bioeng. 2016; 113(3):550−9. https://doi.org/10.1002/bit.25815