Mikrobiol. Z. 2019; 81(3):27-39.
doi: https://doi.org/10.15407/microbiolj81.03.027

Epiphytic Bacteria Bacillus subtilis UzNU-18 from Jerusalem Artichoke (Helianthus tuberosus L.) –
the Active Biocontrol Agent of Phytopathogenic Microorganisms

Davranov K.1, Shurigin V.1, Mammadiev A.2, Ruzimova K.1

1National University of Uzbekistan
4 University Str., Tashkent, 100174, Uzbekistan

2Termez State University
43 Khojaev str., Termez, 732011, Uzbekistan

We isolated a new strain of bacteria belonging to the genus Bacillus from the green leaves of Jerusalem artichoke also known as topinambour (Helianthus tuberosus L.). The aim of this work was to study physiological and biochemical features of the epiphytic strain Bacillus subtilis UzNU-18, its antagonistic activity, and conditions of formation of antimicrobial metabolites synthesized by this strain. Methods. Standard microbiological, molecular biological, biochemical, chromatographical and statistical methods was used. Results. The isolate UzNU-18 was isolated from the surface of green leaves of Jerusalem artichoke also known as topinambour (Helianthus tuberosus L). Upon screening, this isolate was selected as the best growth inhibitor of the tested phytopathogenic fungi species (Fusarium oxysporum, Fusarium culmorum, Fusarium solani, Rhizoctonia solani, Phytophtora capsici, Alteranria alternata) and bacteria species (Pseudomonas syringae, Erwinia carotovora, Xanthomonas beticola). The 16S rRNA sequence analysis showed that the isolate (GenBank accession # MH312004) belongs to Bacillus subtilis. Chromatography mass spectrometry analysis showed that Bacillus subtilis UzNU-18 produces antagonistic substance - 2.4-dimethylpentanone-3. Conclusions. Inoculation of soil with Bacillus subtilis UzNU-18 culture liquid reduced the infectious content in soil and contributed to better growth of wheat seedlings.

Keywords: epiphytic, Bacillus subtilis, phytopathogenic fungi, topinambour, antagonistic activity.

Full text (PDF, in English)

  1. Lambers H, Mougel C, Jaillard B, Hinsinger Ph. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil. 2009; 321(1-2):83-115. https://doi.org/10.1007/s11104-009-0042-x
  2. Vimal SR, Singh JS, Arora NK, Singh S. Soil-plant-microbe interactions in stressed agriculture management: A review. Pedosphere. 2017; 27(2):177-192. https://doi.org/10.1016/S1002-0160(17)60309-6
  3. Food and Agriculture Organization of the United Nations (FAO). The state of food and agriculture. Rome; 2013. Available from: http://www.fao.org/docrep/018/i3300e/i3300e.pdf
  4. Khujamshukurov NA. The development of insecticide biopreparation on the basis of bacteria Bacillus thuringiensis and its introduction into practice. Tashkent; 2017. Uzbek.
  5. Kumar A, Prakash A, Johri BN. Bacillus as PGPR in crop ecosystem. In: Maheshwari DK, editor. Bacteria in Agrobiology: Crop Ecosystems. Berlin Heidelberg: Springer-Verlag; 2011. p. 37-59. https://doi.org/10.1007/978-3-642-18357-7_2
  6. Collins D, Stevens C, Khan V, Nightengale S. Commercial biopreparations of Bacillus subtilis. Phytopathology. 1994; 84(10):1114-1119.
  7. Bacillus subtilis strain QST 713. EU Pesticides database. Available from: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=DE&selectedID=986
  8. Tetreau G, Patil CD, Chandor-Proust A, Salunke BK, Patil SV, Despres L. Production of the bioinsecticide Bacillus thuringiensis subsp. israelensis with deltamethrin increases toxicity towards mosquito larvae. Letters Appl Microbiol. 2013; 57:151-156. https://doi.org/10.1111/lam.12089
  9. Sarma SJ, Brar SK. Industrial Production of Bacillus thuringiensis Based Bio-Insecticide: Which Way Forward? J Biofert Biopest. 2015; 6:1.
  10. Bacillus pumilus strain QST 2808 (006485) Fact Sheet. Available from: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-006485_14-Oct-04.pdf
  11. Segi Y. [Methods of soil microbiology]. Moscow: Kolos; 1983. Russian.
  12. De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, William B. Bergey's manual of systematic bacteriology. 2nd ed. Whitman: Springer; 2009.
  13. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975; 94(3):441-446. https://doi.org/10.1016/0022-2836(75)90213-2
  14. Reddy CA. Methods for general and molecular microbiology. 3rd ed. Washington: ASM press; 2007.
  15. Netrusov AI, Egorova AI, Zaharchuk LM. [Practicum on microbiology]. Moscow: Academiya; 2005. Russian.
  16. Peterburgskiy A.V. [Practicum on agronomical chemistry]. Leningrad: Kolos; 1968. Russian.
  17. Kirchner Yu. [Thin layer chromatography]. Vol. 1. Moscow: Mir; 1981. Russian.
  18. Yuen GY, Godoy G, Steadman JR, Kerr ED, Craig ML. Epiphytic colonization of dry edible bean by bacteria antagonistic to Sclerotinia sclerotiorum and potential for biological control of white mold disease. Biol Control. 1991; 1(4):293-301. https://doi.org/10.1016/1049-9644(91)90081-A
  19. Lanna RF, Romeiro RS, Alves E. Bacterial spot and early blight biocontrol by epiphytic bacteria in tomato plants. Pesquisa Agropecuaria Brasileira. 2010; 45(12):1381-1387. https://doi.org/10.1590/S0100-204X2010001200007
  20. Kolomiec EI, Sverchkova NV, Romanovskaya TV, Bezzubov VI. [Bacterial strain Bacillus pumilus BIM B-263 possessing antagonistic activity to microorganisms - causative agents of plants and animals diseases]. Republic of Belarus Patent BY 9685. 2007. Russian.
  21. Dombrovskaya VA, Overchenko MB. [Multipurpose use of dioxoacetone in the national economy]. Biotechnology. 1988; 4(5):643-647. Russian.