Mikrobiol. Z. 2019; 81(2):84-89.
doi: https://doi.org/10.15407/microbiolj81.02.084

Low Prevalence of Wolbachia Infection in Ukrainian Populations of Drosophila

Serga S.V.1, Kovalenko P.A.1, Gora N.V.1, Lavrinienko A.V.2, Demidov S.V.1,
Mestres F.3, Pascual M.3, Kozeretska I.A.1

1Taras Shevchenko National University of Kyiv
64 Volodymyrska str, Kyiv, 01601, Ukraine

2University of Oulu
Oulu, 90014, Finland

3Universitat de Barcelona
Barcelona, E-08028, Spain

Aim. The aim of this study was to determine the Wolbachia infection prevalence among Drosophila species that are common in Ukraine. Methods. The total of 203 imago, representatives of seven Drosophila species collected from seven localities in Ukraine were screened for Wolbachia via PCR assay. Results. We found Wolbachia infection only in one individual of Drosophila testacea that was collected in the Chornobyl Exclusion Zone. Conclusions. In Ukraine, the examined Drosophila species are characterised by a low prevalence of Wolbachia infection. This research, together with previously reported infections in D. melanogaster and D. simulans populations, indicate that Wolbachia infects 3 out of 9 Drosophila species surveyed in Ukraine.

Keywords: Wolbachia, Drosophila, natural populations, D. testacea, endosymbiont.

Full text (PDF, in English)

  1. Belousov AO, Kozeretskaia IA. Symbiotic bacteria, which modify reproduction processes of Drosophila melanogaster. Mikrobiol Z. 2011; 73(2):43–52.
  2. Mcneill MR, Richards NK, White JA, Laugraud A. Hidden arsenal: endosymbionts in arthropods, their role and possible implications for biological control success. N. Z. Plant Prot. 2014; 67:204–212.
  3. Sazama EJ, Ouellette SP, Wesner JS. Bacterial endosymbionts are common among, but not necessarily within, insect species. Environmental Entomology. 2019; 48 (1):127–133. https://doi.org/10.1093/ee/nvy188
  4. Kriesner P, Conner WR, Weeks AR, Turelli M, Hoffmann AA. Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy. Evolution (NY). 2016; 70:979–997.
  5. Hamm CA, Begun DJ, Vo A, Smith CCR, Saelao P, Shaver AO, et al. Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol Ecol. 2014; 23:4871–4885. https://doi.org/10.1111/mec.12901
  6. Bourtzis K, Nirgianaki A, Markakis G., Savakis C. Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics. 1996; 144:1063–1073.
  7. Mateos M, Castrezana SJ, Nankivell BJ, Estes AM, Markow TA, Moran NA. Heritable Endosymbionts of Drosophila. Genetics. 2006; 174(1):363–376. https://doi.org/10.1534/genetics.106.058818
  8. Lo N, Paraskevopoulos C, Bourtzis K, O'Neill SL, Werren JH, Bordenstein SR, Bandi C. Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int J Syst Evol Microbiol. 2007; 57:654–657. https://doi.org/10.1099/ijs.0.64515-0
  9. Weinert LW, Araujo-Jnr EV, Ahmed MZ, Welch JJ. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc Biol Sci. 2015; 282(1807):20150249. https://doi.org/10.1098/rspb.2015.0249
  10. Haine ER, Pickup N J and Cook JM. Horizontal transmission of Wolbachia in a Drosophila community. Ecol. Entomol. 2005; 30:464–472. https://doi.org/10.1111/j.0307-6946.2005.00715.x
  11. Serga SV, Kozeretskaya IA. The puzzle of Wolbachia spreading out through natural populations of Drosophila melanogaster. Zhurnal obshchey biologii. 2013; 74 (2):99–111. Russian.
  12. Serga S, Maistrenko O, Rozhok A, Mousseau T, Kozeretska I. Fecundity as one of possible factors contributing to the dominance of the wMel genotype of Wolbachia in natural populations of Drosophila melanogaster. Symbiosis. 2014; 63(1):11–17. https://doi.org/10.1007/s13199-014-0283-1
  13. Serga S, Maistrenko O, Rozhok A, Mousseau T, Kozeretska I. Colonization of a temperate-zone region by the fruit fly Drosophila simulans (Diptera: Drosophilidae). Canadian Journal of Zoology. 2015; 93(10):799–804. https://doi.org/10.1139/cjz-2015-0018
  14. Lavrinienko A, Kesäniemi J, Watts PC et al. First record of the invasive pest Drosophila suzukii in Ukraine indicates multiple sources of invasion. J Pest Sci. 2017; 90:421–429. https://doi.org/10.1007/s10340-016-0810-3
  15. Bächli G, Vilela CR, Escher SA, Saura A. The Drosophilidae (Diptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavinca. Vol. 39. Netherlands, Leiden: Brill Publishing House; 2005. p. 1–362.
  16. Aljanabi S. Universal and rapid salt-extraction of high quality genomic DNA for PCR- based techniques. Nucleic Acids Res. 1997; 25(22):4692–4693. https://doi.org/10.1093/nar/25.22.4692
  17. O'Neill S, et al. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA. 1992; 89(7):2699–2702. https://doi.org/10.1073/pnas.89.7.2699
  18. Zhou W, Rousset F, O'Neill SL. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B Biol Sci. 1998; 265:509–515. https://doi.org/10.1098/rspb.1998.0324
  19. Stahlhut J, Desjardins C, Clark M, Baldo L, Russell J, Werren J, and Jaenike J. The mushroom habitat as an ecological arena for global exchange of Wolbachia. Mol Ecol. 2010; 19:1940–1952. https://doi.org/10.1111/j.1365-294X.2010.04572.x
  20. Werren J, Jaenike J. Wolbachia and cytoplasmic incompatibility in mycophagous Drosophila and their relatives. Heredity. 1995; 75:320–326. https://doi.org/10.1038/hdy.1995.140
  21. Jaenike J, Stahlhut JK, Boelio LM, Unckless RL. Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutualism? Mol Ecol. 2010; 19(2):414–25. https://doi.org/10.1111/j.1365-294X.2009.04448.x