Mikrobiol. Z. 2019; 81(2):25-35. Ukrainian.
doi: https://doi.org/10.15407/microbiolj81.02.025
Influence of Cultivation Conditions on Lysing Activity of Bacillus amiloliquefaciens Strain IMV-7571
Rybalchenko N.P., Kharkhota M.A., Avdeeva L.V.
Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine
Aim. To investigate the influence of cultivation conditions on lysing activity of Bacillus amiloliquefaciens strain IMV B-7571. Methods. Lysing activity was determined by cocultivating the strain B. amiloliquefaciens IMV B-7571 and cyanobacterium Anabaena hassalii, Microcystis aeruginosa, M. pulverea in LB, NBY and glucose-mineral nutrient media. Determination of temperature and pH-optimum, study of the growth activity of strain B. amiloliguefaciens IMV B-7571 were studies by conventional methods. Results. The most lysis activity of strain B. amiloliguefaciens IMV B-7571 was at the 24th hour of its cultivation on LB medium. The level of lysis of test cultures cyanobacteria by the strain B. amiloliguefaciens IMV B-7571 was 54.76% for M. aeruginosa, 53.65% for M. pulverea and 58.33% for A. hassalii. The biological activity of strain B. amiloliguefaciens IMV B-7571 significantly depends on its cultivation temperature and pH. Lysing activity was recorded at a temperature of 35°C at pH 7.0. Conclusions. The obtained results will contribute to further research aimed at developing a biological biodrug with lysing activity based on strain B. amiloliguefaciens IMV B-7571.
Keywords: B. amyloliquefaciens, lysing activity, cyanobacteria.
Full text (PDF, in Ukrainian)
- Huanling X., Xianzhu D., Jing L., Xiaohui Z., Caiyun Y., Feng L. A Bacillus sp. strain with antagonistic activity against Fusarium graminearum kills Microcystis aeruginosa selectively. Science of the Total Environment. 2017; 5(3):155-62.
- Carmichael W.W., Boyer G.L. Health impacts from cyanobacteria harmful algae blooms: implications for the North American great lakes. Harmful Algae. 2016; 54:194–212. https://doi.org/10.1016/j.hal.2016.02.002
- Rastogi R.P., Madamwar D., Incharoensakdi A. Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front. Microbiol. 2015; 6:1254. https://doi.org/10.3389/fmicb.2015.01254
- Ou H., Gao N., Deng Y., Qiao J., Wang, H. Immediate and long-termimpacts of UVC irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa. Water Res. 2012; 46:1241–1250. https://doi.org/10.1016/j.watres.2011.12.025
- Shao J., Li R., Lepo J.E., Gu J.D. Potential for control of harmful cyanobacterial blooms using biologically derived substances: problems and prospects. J. Environ. Manag. 2013; 125:149-155. https://doi.org/10.1016/j.jenvman.2013.04.001
- Moreira C., Ramos V., Azevedo J., Vasconcelos V. Methods to detect cyanobacteria and their toxins in the environment. Appl. Microbiol. Biotechnol. 2014; 98:8073–8082. https://doi.org/10.1007/s00253-014-5951-9
- Zheng X., Zhang B., Zhang J., Huang L., Lin J., Li X., et al. A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl. Microbiol. Biotechnol. 2013; 97:9207–9215. https://doi.org/10.1007/s00253-012-4617-8
- Zhang B. H., Ding Z. G., Li H. Q., Mou X. Z., Zhang Y. Q., Yang J. Y., et al. Algicidal activity of Streptomyces eurocidicus JXJ-0089 metabolites and their effects on Microcystis physiology. Appl. Environ. Microbiol. 2016; 82:5132–5143. https://doi.org/10.1128/AEM.01198-16
- Rybalchenko N.P., Kharkhota M.a., Zelena L.B., Avdeeva L.V. Taxonomic position of the strain Bacillus sp. 10.1 as effective algicidal agent. Microbiol. Z. 2017; 79(6):95–104. https://doi.org/10.15407/microbiolj79.06.095
- Steiner R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol. Rev. 1971; 35:171–205.
- Haiyan P., Wenrong H. Litic characteristics and identification of two alga-lysing bacterial strains . J. of Ocean University of China. 2006; 5(4):368–374. https://doi.org/10.1007/s11802-006-0031-0
- Nakamura N., Nakano K., Sugiura N., Matsumura M. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a eutrophic lake. J. Biosci. Bioeng. 2003; 95:179–184. https://doi.org/10.1016/S1389-1723(03)80125-1
- Mu R.M., He Y.J., Liu S.X., Wang X.R., Fan Z.Q. The algicidal characteristics of one algae-lysing FDT5 bacterium on Microcystis aeruginosa. Geomicrobiol. J. 2009; 26:516–521. https://doi.org/10.1080/01490450903061622
- Pirog T.P., Kuzminska U.V. Influence of conditions of cultivation of microorganisms - producers of exopolysaccharides and their synthesis and physical and chemical properties. Biopolym. Cell. 2003; 19(5):393–413. https://doi.org/10.7124/bc.00066E
- Ruimin M., Yujie H., Sixiu L., Xiangrong W., Zhengqiu F. The Algicidal Characteristics of One Algae-Lysing FDT5 Bacterium on Microcystis aeruginosa. Geomicrobiology Journal. 2009; 26:516–521. https://doi.org/10.1080/01490450903061622
- Tujimura S., Ishikawa K., Tsukada H. Effect of temperature on growth of the cyanobacterium Aphanizomenon flos-aquae in Lake Biwa and Lake Yogo. Phycol. Res. 2001; 49:275–280. https://doi.org/10.1111/j.1440-1835.2001.tb00257.x
- Li H.J., Hao M.L., Liu J.X., Chen C., Fan Z.Q.,Wang X.R. Effect of pH on biologic degradation of Microcystis aeruginosa by alga-lysing bacteria in sequencing batch biofilmreactors. Front. Environ. Sci. Eng. 2012; 6:224–230. https://doi.org/10.1007/s11783-011-0314-6
- Ren H., Zhang P., Lui C., Xue Y., Lian B. The potential use of bacterium strain R219 for controlling of the bloom-forming cyanobacteria in freshwater lake. World J. Microbiol. Biotechnol. 2010; 26:465–472. https://doi.org/10.1007/s11274-009-0192-2
- Lei X., Li D., Li Y., Chen Z., Chen Y., Cai G., Yang X., et al. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium. Frontiers in Microbiology. 2015; 6:1–12. https://doi.org/10.3389/fmicb.2015.00007