Mikrobiol. Z. 2019; 81(1):72-83. Russian.
doi: https://doi.org/10.15407/microbiolj81.01.072

β−Mannanase and α−Galactosidase Activity of Micromycetes

Borzova N.V., Brovarskaya O.S., Varbanets L.D., Nakonechna L.T., Kurchenko I.N.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

The aim of research was to study the mannan-degrading activity of isolated micromycete cultures. Methods. The identification of cultures was carried out on a complex of cultural and morphological characteristics. β-Mannanase activity was determined by the dinitrosalicylic method, synthetic nitrophenyl substrates were used to assay other glycosidase activities. Results. From the plant substrates and bodies of bees nine strains of micromycetes were isolated. As a result the identification of the culture was attributed to the species Rhizopus oryzae Went & Prins. Geerl. (3 strains), Penicillium cyclopium Westling (2 strains), Aspergillus sp. (1 strain), Penicillium expansum Lk (3 strains). For the first time β-mannanase and α-galactosidase activity have been demonstrated in representatives of the species R. oryzae, P. cyclopium, P. expansum. It was found that galactomannan guar (0.5%) provides high β-mannanase (1.5–8.5 U/ml) and α-galactosidase (1.1–2.4 U/ml) activity in the culture fluid of the micromycetes. The best sources of nitrogen for culture growth and enzyme synthesis were peptone, yeast autolysate and ammonium sulfate (at a concentration of 5.0, 1.0, and 1.0 g/l respectively). The maximum mannan-degrading activity of micromycetes was observed at 25°C on the 5th day of cultivation. Conclusions. New strains with high β-mannanase and α-galactosidase activity were obtained, promising for use in biotechnological processes of degradation of plant raw materials with a high content of mannans.

Keywords: Rhizopus oryzae, Penicillium cyclopium, Penicillium expansum, β-mannanase activity, α-galactosidase activity, guar galactomannan.

Full text (PDF, in Russian)

  1. Dhawan S, Kaur J. Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol. 2007; 27(4):197–216. https://doi.org/10.1080/07388550701775919
  2. Srivastava PK, Kapoor M. Production, properties, and applications of endo-β-mannanases. Biotechnol Adv. 2017; 35(1):1–19. https://doi.org/10.1016/j.biotechadv.2016.11.001
  3. Chauhan PS, Puri N, Sharma P, Gupta N. Mannanases: Microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol. 2012; 93(5):1817–1830. https://doi.org/10.1007/s00253-012-3887-5
  4. You S, Ding J, Dai Y, Xing R, Qi W, Wang M, Su R, He Z. A simply enzymatic hydrolysis pretreatment for β-mannanase production from konjac powder. Bioresour Technol. 2018; 249:1052–1057. https://doi.org/10.1016/j.biortech.2017.09.181
  5. Cai H, Shi P, Luo H, Bai Y, Huang H, Yang P, Yao B. Acidic β-mannanase from Penicillium pinophilum C1: Cloning, characterization and assessment of its potential for animal feed application. J Biosci Bioeng. 2011; 112(6):551–557. https://doi.org/10.1016/j.jbiosc.2011.08.018
  6. Malgas S, van Dyk JS, Pletschke BI. A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J Microbiol Biotechnol. 2015; 31(8):1167–1175. https://doi.org/10.1007/s11274-015-1878-2
  7. Wang H, Luo H, Li J, Bai Y, Huang H, Shi P, Fan Y, Yao B. An alpha-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with beta-mannanase. Bioresour Technol. 2010; 101(21):8376–8382. https://doi.org/10.1016/j.biortech.2010.06.045
  8. Várnai A, Huikko L, Pere J, Siika-aho M, Viikari LA. Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresource technology. 2011; 102(19):9096–9104. https://doi.org/10.1016/j.biortech.2011.06.059
  9. Malgas S, van Dyk SJ, Pletschke BI. β-Mannanase (Man26A) and α-galactosidase (Aga27A) synergism — a key factor for the hydrolysis of galactomannan substrates. Enzyme Microb Technol. 2015; 70:1–8. https://doi.org/10.1016/j.enzmictec.2014.12.007
  10. Liao H, Li S, Zheng H, Wei Z, Liu D, Raza W, Shen Q, Xu Y. A new acidophilic thermostable endo-1,4-β-mannanase from Penicillium oxalicum GZ-2: cloning, characterization and functional expression in Pichia pastoris. BMC Biotechnol. 2014; 14:90. https://doi.org/10.1186/s12896-014-0090-z
  11. Sakai K, Mochizuki M, Yamada M, Shinzawa Y, Minezawa M, Kimoto S, Murata S, Kaneko Y, Ishihara S, Jindou S, Kobayashi T, Kato M, Shimizu M. Biochemical characterization of thermostable β-1,4-mannanase belonging to the glycoside hydrolasefamily 134 from Aspergillus oryzae. Appl Microbiol Biotechnol. 2017; 101(8):3237–3245. https://doi.org/10.1007/s00253-017-8107-x
  12. Li J, Wang C, Hu D, Yuan F, Li X, Tang S, Wu M. Engineering a family 27 carbohydrate-binding module into an Aspergillus usamii β-mannanase to perfect its enzymatic properties. J Biosci Bioeng. 2017; 123(3):294–299. https://doi.org/10.1016/j.jbiosc.2016.09.009
  13. Shimizu M, Kaneko Y, Ishihara S, Mochizuki M, Sakai K, Yamada M, Murata S, Itoh E, Yamamoto T, Sugimura Y, Hirano T, Takaya N, Kobayashi T, Kato M. Novel β-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J Biol Chem. 2015; 290(46):27914–27927. https://doi.org/10.1074/jbc.M115.661645
  14. Cameron H, Campion SH, Singh T, Vaidya AA. Improved saccharification of steamexploded Pinus radiata on supplementing crude extract of Penicillium sp. 3 Biotech. 2015; 5(2):221–225. https://doi.org/10.1007/s13205-014-0212-2
  15. Wang Y, Shi P, Luo H, Bai Y, Huang H, Yang P, Xiong H, Yao B. Cloning, over-expression and characterization of an alkali-tolerant endo-β-1,4-mannanase from Penicillium freii F63. J Biosci Bioeng. 2012; 113(6):710–714. https://doi.org/10.1016/j.jbiosc.2012.02.005
  16. Pitt JI. A laboratory guide to common Penicillia species. North Ryde, N.S.W:SCIRO Division of Food Processing, 1988.
  17. Domsch KH, Gams W, Anderson T. Compendium of soil fungi. 2nd. Ed. Eching:IHWVerlag, 2007.
  18. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem. 1959; 31:426–428. https://doi.org/10.1021/ac60147a030
  19. Chaplin ME, Kennedy JE. Carbohydrate analysis. Oxford: IRL Press, 1986.
  20. Petrova IS, Vintsyunayte MN. [Determination proteolytic activity Enzyme preparations of microbial origin]. Prikl Biokhim Mikrobiol. 1966; 2(1):322–327. Russian.
  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem. 1951; 193(2):265–275.
  22. Luonteri E, Tenkanen M, Viikari L. Substrate specificities of Penicillium simplicissimum alpha-galactosidases. Enzyme Microb Technol. 1998; 22(3):192–198. https://doi.org/10.1016/S0141-0229(97)00170-1
  23. Talbot G, Sygusch J. Purification and characterization of thermostable beta-mannanase and alpha-galactosidase from Bacillus stearothermophilus. Appl Environ Microbiol. 1990; 56(11):3505–3510.