Mikrobiol. Z. 2019; 81(1):49-60.
doi: https://doi.org/10.15407/microbiolj81.01.049

Adaptive Reactions of Winter Wheat (Triticum aestivum L.) Affected by Eyespot
Causal Agent under the Action of Bacillus subtilis Bacterial Isolates

Batsmanova L.M., Pysmenna Y.M., Kondratiuk T.O., Taran N.Y., Beregova T.V., Ostapchenko L.I.

Taras Shevchenko National University of Kyiv
64/13 Volodymyrska Str., Kyiv, 01601, Ukraine

Aim. To investigate the effect of Bacillus subtilis 537/B1 bacterial isolates to the lectin activity changes and generated malonic dialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) content of winter wheat seedlings of varieties with different susceptibility – Myronivska 808 and Renan were infected by eyespot causal agent Pseudocercosporella herpotrichoides (Fron) Deighton. Methods. Microbiological, immunological and biochemical methods. Results. It is shown that an oxidative explosion developed at the early stages of interaction between plant and fungi, which resulted in the formation of the reactive oxygen species (ROS) in increased quantities and enhanced lipid peroxidation reaction. Under conditions of pathogenesis, the suspension of Bacillus subtilis 537/B1 bacterial isolates revealed tread effect induced the activity of the antioxidant enzymes (superoxide dismutase, catalase), activity of PR-proteins (lectins), which led to the development of induced resistance. Conclusion. The investigated strain Bacillus subtilis can be considered as promising for create preparations on its basis to increase the resistance of plants to stress biotic nature.

Keywords: adaptation, Bacillus, bacteria, catalase, induced resistance, lectins, peroxide lipid oxidation, superoxide dismutase, winter wheat.

Full text (PDF, in English)

  1. Compant S., Duffy B., Nowak J., Clément C., Barka E. A. Use of plant growthpromoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and environmental microbiology. 2005; 71(9):4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  2. Pieterse C.M., Zamioudis C., Berendsen R.L., Weller D.M., van Wees S.C., Bakker P.A. Induced systemic resistance by beneficial microbes. Annual review of phytopathology. 2014; 52:347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
  3. Kilian M., Steiner U., Krebs B., Junge H., Schmeiedeknecht G., Hain R. FZB24 Bacillus subtilis – mode of action of microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer. 2000; 1:72–93.
  4. McSpadden Gardener B. B. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopatology. 2004; 94(11):1252–1258. https://doi.org/10.1094/PHYTO.2004.94.11.1252
  5. Index Fungorum. CABI Bioscience databases. http://www.indexfungorum.org/Names/NamesRecord.asp?RecordID=321748
  6. Wikipedia. https://en.wikipedia.org/wiki/Eyespot_(wheat)
  7. Kondratiuk T.O., Beregova T.V., Ostapchenko L.I. Diversity of Antarctic microorganisms – potential producers of biologically active substances. Ukrainian Antarctic Journal. 2016; 15:176–182.
  8. Lutsyk M. D., Panasiuk E. N., Lutsyk A. D. Lektiny. Lvov: Vyshcha shkola; 1981. Russian.
  9. Pohorila N.F., Surzhyk L.M., Pohorila Z.O. Novyi sposib testuvannia lektyniv roslyn. Ukr. Botan. Journ. 2002; 59(2):217–220. Ukrainian.
  10. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annal Biochem. 1976; 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Dhindsa R.S., Matowe W. Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot. 1981; 32(1):79–91. https://doi.org/10.1093/jxb/32.1.79
  12. Giannopolitis C.N., Ries S.K. Superoxide dismutase: I. Occurrence in higher plants. Plant Physiol. 1977; 59(2):309–314. https://doi.org/10.1104/pp.59.2.309
  13. Kumar G.N., Knowels N.R. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme during aging and sprouting of potato (Solanum tuberosum L.) seedtubers. Plant Physiol. 1993; 102(1):115–124. https://doi.org/10.1104/pp.102.1.115
  14. Taran N.Yu., Okanenko O.A., Batsmanova L.M., Musiienko M.M. Vtorynnyi oksydnyi stres yak element zahalnoi adaptyvnoi vidpovidi roslyn na diiu nespryiatlyvykh faktoriv. Fiziologiya i biohimiya kulturnyh rasteniy. 2004; 36(1):3–14. Ukrainian.
  15. Trach V.V., Storozhenko V.A. Superoksiddismutaza kak komponent antioksidantnoy sistemy rasteniy pri abioticheskih stressovyh vozdeystvyah. – Fiziologiya i biohimiya kulturnyh rasteniy. 2007; 39(4):291–302. Russian.
  16. Vandenabeele S., Vanderauwera S., Vuylsteke M., Rombauts S., Langebartels C., Seidlitz H. K., et al. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. The Plant Journal. 2004; 39(1):45–58. https://doi.org/10.1111/j.1365-313X.2004.02105.x
  17. Pieterse C.M.J., Van der Does D., Zamioudis C., Leon-Reyes A., Van Wees S.C.M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012; 28:1–28. https://doi.org/10.1146/annurev-cellbio-092910-154055
  18. De Vleesschauwer D., Höfte M. Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 2009; 51:223–281. https://doi.org/10.1016/S0065-2296(09)51006-3
  19. Van Loon L.C. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 2007; 119(3):243–254. https://doi.org/10.1007/s10658-007-9165-1
  20. Butaye K.M., Goderis I.J., Wouters P.F., Pues J.M.T., Delauré S.L., Broekaert W.F., et al. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J. 2004; 39(3):440–449. https://doi.org/10.1111/j.1365-313X.2004.02144.x
  21. Melent'ev A. I. Aerobnye sporoobrazuyushie bakterii Bacillus Cohn v agroekosistemah. Moscow: Nauka; 2007. Russian.
  22. Aktuganov G.E., Galimzyanova N.F., Melent'ev A.I., Kuzmina L.Yu. Vnekletochnye gidrolazy shtamma Basillus sp. 739 i ih uchastie v lizise kletochnyh stenok mikromicetov. Mikrobiologiya. 2007; 76(4):471–479. Russian.
  23. Porcel R., Zamarre-o A.M., García-Mina J.M., Aroca R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol. 2014; 14(1):36. https://doi.org/10.1186/1471-2229-14-36
  24. Verhagen B.W.M. Trotel-Aziz P., Couderchet M., Hofte M., Aziz A. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defense responses in grapevine. J. Exp. Bot. 2010; 61(1):249–260. https://doi.org/10.1093/jxb/erp295
  25. Pastor V., Luna E., Mauch-Mani B., Ton J., Flors V. Primed plants do not forget. Environ. Exp. Bot. 2013; 94:46–56. https://doi.org/10.1016/j.envexpbot.2012.02.013
  26. Torres M.A. ROS in biotic interactions. Physiol. Plant. 2010; 138(4):414–429. https://doi.org/10.1111/j.1399-3054.2009.01326.x
  27. Pozo M.J., Van der Ent S., Van Loon L.C., Pieterse C.M.J. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 2008; 180(2):511–523. https://doi.org/10.1111/j.1469-8137.2008.02578.x
  28. Falardeau J., Wise C., Novitsky L., Avis T.J. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J. Chem. Ecol. 2013; 39(7):869–878. https://doi.org/10.1007/s10886-013-0319-7
  29. Wang X., Wang J., Jin P., Zheng Y. Investigating the efficacy of Bacillus subtilis SM21 on controlling Rhizopus rot in peach fruit. Int. J. Food Microbiol. 2013; 164(2-3):141–147. https://doi.org/10.1016/j.ijfoodmicro.2013.04.010