Mikrobiol. Z. 2019; 81(1):3-8. Ukrainian.
doi: https://doi.org/10.15407/microbiolj81.01.003

Genomes Identity of Streptomyces globisporus 1912-4Crt, Streptomyces globisporus C-1027,
Streptomyces sp. TUE6075, and Streptomyces sp. S063

Matselyukh B.P.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. Determination of the genetic identity of the strain Streptomyces globisporus 1912-4Crt with the representatives of different species of the Streptomyces genus. Methods. Comparative analysis of the homology of the sequencing genes of the different Streptomyces strains by means of the Blast program (www.ncbi.nlm.nih.gov/blast) was fulfiled. Results. DNA of the 60 contiges of sequencing genome of the Streptomyces globisporus 1912 consisting of 2577748 bp (35% of the genome) is identical to the genomes of Streptomyces globisporus TFH56, Streptomyces globisporus C-1027, Streptomyces sp. Tue6075 and Streptomyces sp. S063 on 96.3, 96.2, 95.4 and 95.0%, correspondingly. Conclusion. High genomes identity of the above mentioned Streptomyces strains, isolated from the different and remote parts of terrestrial globe, objectively indicates on their close genetic relationship as the representatives of the same genus Streptomyces globisporus.

Keywords: Streptomyces globisporus 1912-4Crt, Streptomyces globisporus TFH56, Streptomyces globisporus C-1027, Streptomyces sp. Tue6075, Streptomyces sp. S063, genomes identity.

Full text (PDF, in Ukrainian)

  1. Van Wezel G, McKenzie N, Nodwell J. Applying the genetics of secondary metabolism in model Actinomycetes to the discovery of new antibiotics. Methods Enzymol. 2009; 458:117–141. https://doi.org/10.1016/S0076-6879(09)04805-8
  2. Takano H, Obitsu S, Beppu T, Ueda K. Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodipendent transcription of the carotenoid biosynthesis gene cluster. J. Bacteriol. 2005; 187:1825–1832. https://doi.org/10.1128/JB.187.5.1825-1832.2005
  3. Romero-Rodriguez A, Robledo-Casados I, Sanchez S. An overview on transcriptional regulators in Streptomyces. Biochim. Biophys. Acta. 2015; 1849:1017–1039.
  4. Harrison J., Studholme D.J. Recently published Streptomyces genome sequences. Microb. Biotechnol. 2014; 7(5):373−380. https://doi.org/10.1111/1751-7915.12143
  5. Korynevska A., Heffeter P., Matselyukh B., Elbling L., Micksche M., Stoika R., Berger W. Mechanisms underlying the anticancer activities of the angucycline landomycin E. Biochem. Pharamacol. 2007; 74:1713−1726. https://doi.org/10.1016/j.bcp.2007.08.026
  6. Matselyukh B., Mohammadipanah F., Laatsch H., Rohr J., Efremenkova O., Khilya V. N-methylphenylalanyl-dehydrobutyrine diketopiperazine, an A-factor mimic that restores antibiotic biosynthesis and morphogenesis in Streptomyces globisporus 1912-B2 and Streptomyces griseus 1439. J. Antibiot. (Tokyo). 2015; 68:9−14. https://doi.org/10.1038/ja.2014.86
  7. Matselyukh B.P., Polishchuk L.V., Lukyanchuk V.V., Golembiovska S.L., Lavrenchuk V.Y. Molecular mechanism of the carotenoid biosynthesis activation in the producer Streptomyces globisporus 1912. Biotechnologia acta. 2014; 7(6):69-74. https://doi.org/10.15407/biotech7.06.069
  8. Matselyukh B.P., Polishchuk L.V., Lukyanchuk V.V., Golembiovska S.L., Lavrenchuk V.Y. Sequences of landomycin E and carotenoid biosynthetic gene clusters, and molecular structure of transcriptional regulator of Streptomyces globisporus 1912. Mikrobiol. Z. 2016; 78(6):59-69. https://doi.org/10.15407/microbiolj78.06.060
  9. Matselyukh B.P., Matselyukh D.Y., Golembiovska S.L., Polishchuk L.V., Lavrinchuk V.Y. Isolation of Streptomyces globisporus and Blakeslea trispora mutants with increased carotenoid content. Mikrobiol. Z. 2013; 75(6):10−16.
  10. Polishchuk L.V., Lukyanchuk V.V. Opredeleniye blizkorodstvennych svyazei schtamma Streptomyces globisporus 1912-2. Mikrobiol. Z. 2017; 79(4):53−65. Ukrainian. https://doi.org/10.15407/microbiolj79.04.053
  11. Hu J., Xue Y.-C., Xie M-Y., Zhang R., Otani T., Minami Y., Yamada Y., Marunaka T. A new macromolecular antitumor antibiotic, C-1027. I. Discovery, taxonomy of producing organism, fermentation and biological activity. J. Antibiot. 1988; 41(11):1575−1579. https://doi.org/10.7164/antibiotics.41.1575
  12. Chen Y., Yin M., Horsman G., Huang S., Shen B. Manipulation of pathway regulation for overproduction of the enediyne antitumor antibiotic C-1027. J. Antibiot. 2010; 63(8):482−485. https://doi.org/10.1038/ja.2010.55
  13. Schimana J., Gebhardt K., Holtzel A., Schmid D., Süssmuth R., Müller J., Pukall R., Fiedler H. Arylomycins A and B, new biaryl-bridged lipopeptide antibiotics produced by Streptomyces sp. Tue6075. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 2002; 55(6):565−570. https://doi.org/10.7164/antibiotics.55.565