Mikrobiol. Z. 2018; 80(5):48-62. Ukrainian.
doi: https://doi.org/10.15407/microbiolj80.05.048

Genetic Heterogenicity of Pseudomonas syringae pv. atrofaciens Strains Based on RAPD-PCR Analysis

Butsenko L.M., Pasichnyk L.A.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

A comprehensive study of P. syringae pv. atrofaciens allows not only to receive important fundamental information that will give an answer to the question of the current systematic status of this pathogen, will allow to establish the structure of the pathogen population in Ukraine, to identify and track the spread of aggressive strains, and will provide important information for breeders regarding the creation and introduction of wheat varieties, resistant to bacteriosis. Aim. Determination of genetic heterogeneity of the causative agent of basal bacteriosis P. syringae pv. atrofaciens by RAPD-PCR analysis. Methods. DNA was isolated using a set of DNA-sorb B reagents according to the instructions. RAPD-PCR amplification was performed with the OPA-13 primer (5’-CAGCACCCAC-3‘). The amplification products were separated by electrophoresis in a 1.5 % agarose gel in TAE buffer for 30 minutes at 100U. Results. Using the OPA-13 primer, spectra of amplified fragments were obtained, which were copious in all strains of P. syringae pv. atrofaciens. The range of polymorphic loci was from 200 to 700 kb. Conclusions. Based on RAPD-profiling with the OPA-13 primer, it was established that isolated from different plant hosts in 11 regions of Ukraine strains of P. syringae pv. atrofaciens represent a genetically homogeneous group.

Keywords: Pseudomonas syringae pv. atrofaciens, RAPD-PCR, population, genetic heterogenicity.

Full text (PDF, in Ukrainian)

  1. Pasichnyk LA, PatykaVP, Khodos SF, Vinnichuk TS. [Basal bacteriosis of wheat and influence of agrotechnical receptions on its spread]. Microbiol Z. 2012; 74(4):37-44. Russian.
  2. Matveeva YeV, Pekhtereva ESH, Polityko VA, Ignatov AN, Nikolaeva EV, Schaad NW Distribution and virulence of Pseudomonas syringae pv. atrofaciens, causal agent of basal glume rot, in Russia. In: Iacobellis NS, Collmer A, Hutcheson SW, Mansfield JW, Morris CE, Schaad NW, Stead DE, Surico G, Ullrich MS (eds). Presentations from the 6th International Conference on Pseudomonas syringae pathovars and related pathogens. Maratea, Italy, September 15–19. Kluwer Academic Publishers, Dordrecht, Netherlands. 2003. p. 97-105.
  3. Kazempour MN, Kheyrgoo M, Pedramfar H, Rahimian H Isolation and identification of bacterial glum blotch and leaf blight on wheat (Triticum aestivum L.). African Journal of Biotechnology. 2010; 9(20):2866-2871.
  4. Lazariev AM. Pseudomonas syringae pv. atrofaciens (McCulluch) Young, Dye & Wilkie – Bazalnyi bakterioz pshenitsy. In: Afonin AN; Grin SL; Dziubenko NI; Frolov A.N. (red.) Agroekologicheskii atlas Possii i sopredelnykh stran: ekonomicheski znachimye rasteniia, ikh vrediteli, bolezni i sornyie rasteniia. 2008. Russian.
  5. Rademaker JL, Hoste B, Louws FJ, Kersters K, Swings J, Vauterin L, Vauterin P, de Bruijn FJ. Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol. Microbiol. 2000; 50(2):665-677. https://doi.org/10.1099/00207713-50-2-665
  6. Young JM, Jones DS, Gillings M. Relationships between populations of Pseudomonas syringae pv. persicae determined by restriction fragment analysis. Plant Pathology. 1996; 45:350-357. https://doi.org/10.1046/j.1365-3059.1996.d01-117.x
  7. Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol. 1994; 60(7):2286-2295.
  8. Louws FJ, Rademaker ILW, de Bruijn FJ. The three DS of PCR-based genomic analysis of phytobacteria: diversity, detection and diseases diagnosis. Ann Rev Phytopathol. 1999; 37:81-125. https://doi.org/10.1146/annurev.phyto.37.1.81
  9. Bobrova VK, Milyutina IA, Troitskii AV. [Genetic diversity in Pseudomonads associated with cereal cultures infected with basal bacteriosis]. Mikrobiologiia. 2005; 74(4):463-470. Russian.
  10. Williams YGK, Kubelik AR, Livar KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res.1990; 18(22):6531-6535. https://doi.org/10.1093/nar/18.22.6531
  11. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res. 1990; 18(24):7213-7218. https://doi.org/10.1093/nar/18.24.7213
  12. Patyka VP, Pasichnyk LA, Gvozdyak RI, Petrychenko VF, Korniychuk OV, Kalinichenko AV et al. Fitopatohenni bakterii. Metody doslidzhen. Monografiia. Za red. VP Patyky. Vinnytsia: TOV Vingruk; 2017. Ukrainian.
  13. Sazakli E, Leotsinidis M, Vantarakis A, Papapetropoulou M. Comparative typing of Pseudomonas species isolated from the aquatic environment in Greece by SDS-PAGE and RAPD analysis. J Appl Microbiol. 2005; 99:1191-1203. https://doi.org/10.1111/j.1365-2672.2005.02691.x
  14. Savenko OA, Butsenko LM, Pasichnyk LA, Patyka VP. [Rapd-analysis phytopathogenic bacteria Pseudomonas syringae, isolated from weeds in agrophytocenoses of wheat]. Mikrobiologiia i biotekhnologiia. 2014; 27(3):15-22. Ukrainian.
  15. Pasichnyk LA, Butsenko LM. [Serological features of bacteria Pseudomonas syringae agroecosystems of cereal]. Mikrobiol Z. 2018; 80(4):41-54. Ukrainian. https://doi.org/10.15407/microbiolj80.04.041
  16. Olive DM, Bean P. Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol. 1999; 37:1661-1669.
  17. Elaichouni A, Verschraegen G, Claeys G, Devleeschouwer M, Godard C and Vaneechoutte M. Pseudomonas aeruginosa serotype O12 outbreak studied by Arbitrary Primer PCR. J Clin Microbiol. 1994; 32:666-671.
  18. Haase A, Melder A, Smith-Vaughan H, Kemp D. and Currie B. RAPD analysis of isolates of Burkholderia pseudomallei from patients with recurrent melioidosis. Epidemiol Infect. 1995;115:115-121. https://doi.org/10.1017/S0950268800058179
  19. Renders N, Romling U, Verbrugh H. and Van Belkum A. Comparative typing of Pseudomonas aeruginosa by random amplification of polymorphic DNA or pulsedfield gel electrophoresis of DNA macrorestriction fragments. J Clin Microbiol. 1996; 34:3190-3195.
  20. Hernandez J, Ferru´s M, Herna´ndez M, Owen RJ. Arbitrary primed PCR fingerprinting and serotyping of clinical Pseudomonas aeruginosa strains. FEMS Immunol Med Microbiol. 1997; 17:37-47. https://doi.org/10.1111/j.1574-695X.1997.tb00994.x
  21. Momol MT, Momol EA, Lamboy WF, Norelli JL, Beer SV, Aldwinekle HS. Characterization of Erwinia amylovora strains using random amplified polymorphic DNA fragments (RAPDs). J Appl Microbiol. 1997; 82(3);389-398. https://doi.org/10.1046/j.1365-2672.1997.00377.x
  22. Khoodoo MHR, Jaufeerally-Fakim Y. RAPD-PCR fingerprinting and southern analysis of Xanthomonas axonopodis pv. dieffenbachiae strains isolated from different aroid hosts and locations. Plant Diseases. 2004; 88:980-988. https://doi.org/10.1094/PDIS.2004.88.9.980
  23. Young JM. Taxonomy of Pseudomonas syringae. J Plant Pathology. 2010; 92(1, Supplement):S1.5-S1.14.