Mikrobiol. Z. 2018; 80(5):3-14.
doi: https://doi.org/10.15407/microbiolj80.05.003

Microbial Communities and Sulphate-Reducing Bacteria in Soils Near Main-Gas Pipeline

Abdulina D.R., Purish L.M., Iutynska G.O.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim of the study: to study the microbial communities and sulfate-reducing bacteria of soils collected from the surfaces of the gas-pipeline. Methods. Microbiological, biochemical, molecular biological. Results. In the microbial communities of soils near the main-gas pipeline “Soyuz” (Ivano-Frankivsk region, Ukraine) were appeared such microorganisms as iron-reducing, tionic denitrifying, ammonifying, denitrifying and diazotrophic bacteria among them were dominated sulfate-reducing bacteria. It were obtained 4 pure cultures of the sulfate-reducing bacteria and was determined cultural-morphological and physiological-biochemical characteristics of bacteria. In the fatty acid components of sulfate-reducing bacteria were identified 14 fatty acids with chain length from C10 to C18. According to partial sequence of the 16S rRNA gene the K1 isolate has 90 % homology with the sequence of Desulfovibrio desulfuricans ATCC 27774 (NR074858.1), K2 isolate – 92 % homology with Desulfovibrio sp. D4 (AF192155) K1/3 isolate has 95 % homology with Desulfotomaculum kuznetsovii DSM 6115 (CP002770.1). Conclusion. According to the phenotypic, chemotaxonomic and molecular genetic characteristics bacteria isolated from soils near main-gas pipeline were related to the genera Desulfovibrio, Desulfotomaculum.

Keywords: sulfate-reducing bacteria, taxonomy, identification, fatty acid composition, 16S rRNA analysis.

Full text (PDF, in English)

  1. Abdulina DR, Purish LM, Asaulenko LG, Iutynska GA. [Sulfdogenic microbial communities from technogenically transformed soils]. Mikrobiologyia i biotechnologyia. 2016; 2:16-29. [Russian]
  2. Andreyuk KI, Kozlova IP, Kopteva ZhP, Pilyasheko-Novokhatny AI, Zanina VV, Purish LM. Microbial corrosion of underground structures. Kyiv: Naukova Dumka. 2005. [Ukrainian]
  3. Asaulenko LG, Abdulina DR, Purish LM. [Taxonomic position of certain representatives of sulphate-reducing corrosive microbial community]. Mikrobiol. Z. 2010; 72(4):3-10. [Ukrainian]
  4. Bomberg M, Makinen J, Salo M, Arnold M. Microbial community structure and functions in ethanol-fed sulfate removal bioreactors for treatment of mine water. Microorganisms. 2017; 5:61. https://doi.org/10.3390/microorganisms5030061
  5. Bergey's Manual of Determinative Bacteriology. Ed. by J.G Holt, N.R. Krieg. Moscow: Mir, 1997. [Russian]
  6. Bergey's Manual of Systematic Bacteriology. Ed. D Brenner, NR Krieg, JT Staley. New York: Springer, 2005.
  7. Duncan KE, Gieg LM, Parisi VA, Tanner RS, Tringe SG et al. Biocorrosive thermophilic microbial communities in Alaskian North Slope oil facilities. Environ. Sci. Technol. 2009; 43(20):7977-7984. https://doi.org/10.1021/es9013932
  8. Egorova DV. Influence of the ecological conditions on the microbial community diversity of Trans Baikal saline lakes. Thesis Cand Biol. Sci. Ulan-Ude, 2013. [Russian]
  9. Guan J, Zang BL, Mbadinga SM, Liu JF, Gu JD, Mu BZ. Functional genes (dsr) approach reveals similar sulphidogenic prokaryotes diversity but different structure in saline waters from corroding high temperature petroleum reservoirs. Appl. Microbiol. Biotechnol. 2014; 98:1871-1882. https://doi.org/10.1007/s00253-013-5152-y
  10. Guerzoni M, Lanciotti R, Cocconcelli P. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology. 2001; 147:2255-2264. https://doi.org/10.1099/00221287-147-8-2255
  11. Karnachuk OV, Kurochkina SY, Nicomrat D, Frank YA, Ivasenko DA et al. Copper resistance in Desulfovibrio strain R2. Antonie Van Leuwenhoek. Journal of Microbiology. 2003; 83:99-106.
  12. Kjeldsen KU, Kjellerup BV, Egli K, Frolund B, Nielsen PH, Ingvorsen K. Phylogenetic and functional diversity of bacteria in biofilms from metal surfaces of an alkaline district heating system. FEMS Microbiol. Ecol. 2007; 61:384-397. https://doi.org/10.1111/j.1574-6941.2006.00255.x
  13. Lakshmi VV. Metagenomics – tool for inexhaustible access to microbial communities. Microbial Diversity Exploration and Bioprospecting. Ed. Ramm Reddy S, Singara Charya MA, Girisham S. Scientific Publishers (India), New Deli. 2012; 5:53-72.
  14. Manual of methods for general bacteriology. Editor-in-chief P. Gerhardt. Moscow: Mir, 1983. [Russian]
  15. Nazina TN, Rozanova EP, Belyakova EV, Lysenko AM, Tourova TP, Belyaev SS, Poltaraus AB, Osipov GA. Description of "Desulfotomaculum nigrificans subsp. salinus" as a wew species, Desulfotomaculum salinum sp. nov. Microbiology (Mikrobiologiya). 2005; 74(5):567-574. https://doi.org/10.1007/s11021-005-0104-x
  16. Nazina TN, Turova TP, Ivanova AE, Belyaev SS, Poltaraus AB, Gryadunov DA, Osipov GA. Phylogenetic position and chemotaxonomic characteristics of the thermophilic sulfate-reducing bacterium Desulfotomaculum kuznetsovii. Microbiology (Mikrobiologiya). 1999; 68(1):77-84.
  17. Parkes RJ Analysis of microbial communities within sediments using biomarkers. In Ecology of microbial communities. Eds: Fletcher M., Gray TR, Jones JG, Cambridge Univ. Press, Cambridge. 1987. p. 147-177.
  18. Postgate JR. The sulphate-reducing bacteria. Cambridge: Cambridge Univ. Press, 1984.
  19. Prakticum po microbiologii (Manual for microbiology). Ed. by prof. AI. Netrusov. Moscow: Academia, 2005. [Russian]
  20. Purish LM, Asaulenko LG, Abdulina DR, Iutinskaia GA. [Biodiversity of sulfatereducing bacteria growing on objects of heating systems]. Mikrobiol. Z. 2014; 76(3):11-17. [Russian]
  21. Sorokin DY, Tourova TP, Abbas B, Suhacheva MV, Muyzer G. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulphate-reducing bacterium from hypersaline chloride-sulfate lakes in Central Asia. Extremophiles. 2012; 16:411-417. https://doi.org/10.1007/s00792-012-0440-5
  22. Stevenson BS, Drilling HS, Lawson PA, Duncan KE, Parisi VA et al. Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure. Environ. Microbiol. 2011; 13(4):1078-1090. https://doi.org/10.1111/j.1462-2920.2010.02413.x
  23. Tourova TP, Kuznetzov BB, Novikova EN, Poltaraus AB, Nazina TN. Heterogeneity of the nucleotide sequences of the 16s rRNA genes of the type strain of Desulfotomaculum kuznetsovii. Microbiology (Mikrobiologiya). 2001; 70(6):788-795.
  24. Vainshtein MB, GogotovA GI, Galushko AS. Grouping of sulfate-reducing bacteria by spectral properties of cytochrome c. Microbiology (Mikrobiologiya). 1996; 65(2):160-164. [Russian]
  25. Varbanets LD, Zdorovenko GM, Knirel YuA. Metody issledovania endotoksinov. Kyiv: Naukova Dumka, 2006. [Russian]
  26. Woordow G. The Genus Desulfovibrio: the centennial. Appl. Environ. Microbiol. 1995; 61(8):2813–2819.