Mikrobiol. Z. 2018; 80(3):115-135. Ukrainian.
doi: https://doi.org/10.15407/microbiolj80.03.115

Prospects of Using Microbial Surfactants in Plant Growing

Pirog T.P.1,2, Paliichuk O.I.1, Iutynska G.O.2, Shevchuk T.A.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Surfactants of microbial origin are multifunctional preparations, since they have a wide range of physicochemical and biological properties (ability to reduce surface tension and emulsification of various substrates, antimicrobial and anti-adhesion activity). Thereby microbial surfactants are promising for application in various industries and agriculture. The review presents modern literature data concerning use of microbial surfactants (lipopeptides, rhamno-and sophorolipids) for bioremediation of agriculture soils, production of pesticides, control of the number of phytopathogenic microorganisms, stimulation of plant growth. The data of our own studies of the antimicrobial activity of the surfactant synthesized by Acinetobacter calcoaceticus IMV B-7241, Nocardia vaccinii IMV B-7405 and Rhodococcus erythropolis IMV Ac-5017, as well as the role of these surfactants in the destruction of oil contamination of the soil, including complex with heavy metals.

Keywords: surface-active substances of microbial origin, agriculture, destruction of xenobiotics, phytopathogens.

Full text (PDF, in Ukrainian)

  1. Marchant R, Banat IM. Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol. Lett. 2012; 34(9):1597−605. https://doi.org/10.1007/s10529-012-0956-x
  2. Paulino BN, Pessôa MG, Mano MC, Molina G, Neri-Numa IA, Pastore GM. Current status in biotechnological production and applications of glycolipid biosurfactants. Appl. Microbiol. Biotechnol. 2016; 100(24):10265−93. https://doi.org/10.1007/s00253-016-7980-z
  3. Santos DK, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016; 17(3):401. https://doi.org/10.3390/ijms17030401
  4. Campos JM, Stamford TL, Sarubbo LA, de Luna JM, Rufno RD, Banat IM. Microbial biosurfactants as additives for food industries. Biotechnol. Prog. 2013; 29(5):1097−108. https://doi.org/10.1002/btpr.1796
  5. Fracchia L, Banat JJ, Cavallo M, Ceresa C, Banat IM. Potential therapeutic applications of microbial surface-active compounds. AIMS Bioengineering, 2015; 2(3):144−62. https://doi.org/10.3934/bioeng.2015.3.144
  6. De Almeida DG, Soares Da Silva RC, Luna JM, Rufno RD, Santos VA, Banat IM, Sarubbo LA. Biosurfactants: promising molecules for petroleum biotechnology advances. Front. Microbiol. 2016; 7:1718. https://doi.org/10.3389/fmicb.2016.01718
  7. Cheowtirakul C, Linh ND. The study of biosurfactant as a cleaning agent for insecticide residue in leafy vegetables. Au. J. T. 2010; 14(2):75−87.
  8. Sachdev DP, Cameotra SS. Biosurfactants in agriculture. Appl. Microbiol. Biotechnol. 2013; 97(3):1005−16. https://doi.org/10.1007/s00253-012-4641-8
  9. Yan F, Xu S, Chen Y, Zheng X. Effect of rhamnolipids on Rhodotorula glutinis biocontrol of Alternaria alternata infection in cherry tomato fruit. Postharv. Biol. Technol. 2014; 97:32–5. https://doi.org/10.1016/j.postharvbio.2014.05.017
  10. Harjot PK, Bhairav P, Sukhvir K. A review on applications of biosurfactants produced from unconventional inexpensive wastes in food and agriculture industry. World J. Pharm. Res. 2015; 8(4):827−42.
  11. Sinumvayo JP, Ishimwe N. Agriculture and food applications of rhamnolipids and its production by Pseudomonas aeruginosa. Chem. Eng. Process Technol. 2015; 6.
  12. Mnif I, Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J. Sci. Food Agric. 2016; 96(13):4310−20. https://doi.org/10.1002/jsfa.7759
  13. Sekhon Randhawa KK, Rahman PK. Rhamnolipid biosurfactants − past, present, and future scenario of global market. Front. Microbiol. 2014; 5:454. https://doi.org/10.3389/fmicb.2014.00454
  14. Karpenko OV, Koretska NI, Shcheglova NS, Karpenko IV, Baranov VI. Gramineae plants growth stimulation by surface-active rhamnolipids. Biotechnologia acta. 2013; 6(6):94−9.
  15. Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb. Biotechnol. 2015; 8(2):281−95. https://doi.org/10.1111/1751-7915.12238
  16. de Oliveira MR, Magri A, Baldo C, Camilios-Neto D, Minucelli T, Colabone PC. Review: sophorolipids a promising biosurfactant and it's applications. IJBR. 2015; 6(2):161−74.
  17. da Silva VL, Lovaglio RB, Tozzi HH, Takaki M, Contiero J. Rhamnolipids: a new application in seeds development. J. Med. Biol. Sci. Res. 2015; 1(8):100−6.
  18. Cochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med. Res. Rev. 2016; 36(1):4−31. https://doi.org/10.1002/med.21321
  19. Pirog T, Iutynska G, Sofilkanych A, Konon A. [Microbial surfactants in environmental technologies]. Кyiv: Nauk. Dumka, 2016. Ukrainian.
  20. Tyagi M, da Fonseca MM, Carvalho CC. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 2011; 22(2):231–41. https://doi.org/10.1007/s10532-010-9394-4
  21. Ławniczak Ł, Marecik R, Chrzanowski Ł. Contributions of biosurfactants to natural or induced bioremediation. Appl. Microbiol. Biotechnol. 2013; 97(6):2327–39. https://doi.org/10.1007/s00253-013-4740-1
  22. Das K, Mukherjee AK. Crude petroleum-oil biodegradation efciency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour. Technol. 2007; 98(7):13–1345. https://doi.org/10.1016/j.biortech.2006.05.032
  23. Fan MY, Xie RJ, Qin G. Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. Environ. Technol. 2014; 35(1–4):391–9. https://doi.org/10.1080/09593330.2013.829504
  24. Silva EJ, Rocha E, Silva NM, Rufno RD, Luna JM, Silva RO, Sarubbo LA. Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Colloids Surf. B. Biointerfaces. 2014; 117:36−41. https://doi.org/10.1016/j.colsurfb.2014.02.012
  25. Bao M, Pi Y, Wang L, Sun P, Li Y, Cao L. Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3-2 and its biodegradation of crude oil. Environ. Sci. Process Impacts. 2014; 16(4):897–903. https://doi.org/10.1039/C3EM00600J
  26. Das R, Tiwary BN. Isolation of a novel strain of Planomicrobium chinense from diesel contaminated soil of tropical environment. J. Basic. Microbiol. 2013; 53(9):723–32. https://doi.org/10.1002/jobm.201200131
  27. Juwarkar AA, Dubey KV, Nair A, Singh SK. Bioremediation of multi-metal contaminated soil using biosurfactant – a novel approach. Indian J. Microbiol. 2008; 48(1):142–6. https://doi.org/10.1007/s12088-008-0014-5
  28. Das P, Mukherjee S, Sen R. Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour. Technol. 2009; 100(20):4887–4890. https://doi.org/10.1016/j.biortech.2009.05.028
  29. Liu X, Wang JT, Zhang M, Wang L, Yang YT. Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant. Huan. Jing. Ke. Xue. 2013; 34(4):1590–97.
  30. Maslin PM, Maier RM. Rhamnolipid enhanced mineralization of phenanthrene in organic metal co-contaminated soils. Bioremed. J. 2000; 4(4):295–308. https://doi.org/10.1080/10889860091114266
  31. Singh AK, Cameotra SS. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ. Sci. Pollut. Res. Int. 2013; 20(10):7367–76. https://doi.org/10.1007/s11356-013-1752-4
  32. Whang LM, Liu PW, Ma CC, Cheng SS. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater. 2008; 151(1):155–63. https://doi.org/10.1016/j.jhazmat.2007.05.063
  33. Lin TC, Pan PT, Young CC, Chang JS, Chang TC, Cheng SS. Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil. Environ. Sci. Pollut. Res. Int. 2011; 18(9):1487–96. https://doi.org/10.1007/s11356-011-0485-5
  34. Chrzanowski Ł, Ławniczak Ł, Czaczyk K. Why do microorganisms produce rhamnolipids? World J. Microbiol. Biotechnol. 2012; 28(2):401–19. https://doi.org/10.1007/s11274-011-0854-8
  35. Kumar R, Bharagava RN, Kumar M, Singh SK, Govind K. Enhanced Biodegradation of mobil oil hydrocarbons by biosurfactant producing bacterial consortium in wheat and mustard rhizosphere. Pet. Environ. Biotechnol. 2013; 4:5. https://doi.org/10.4172/2157-7463.1000158
  36. Sumi CD, Yang BW, Yeo IC, Hahm YT. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol. 2015; 61(2):93−103. https://doi.org/10.1139/cjm-2014-0613
  37. Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed. Res. Int. 2015; 2015:473050.
  38. Kakinuma A, Oachida A, Shima T, Sugino H, Isano M, Tamura G, Arima K. Confrmation of the structure of surfactin by mass spectrometry. Agric. Biol. Chem. 1969; 33(11):1669–72. https://doi.org/10.1080/00021369.1969.10859524
  39. Neu TR, Poralla K. Emulsifiying agent from bacteria isolated during screening for cells with hydrophobic surfaces. Appl. Microbiol. Biotechnol. 1990; 32(5):521–525. https://doi.org/10.1007/BF00173721
  40. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A. Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol. 2014; 27:30−7. https://doi.org/10.1016/j.copbio.2013.09.012
  41. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016; 183:92−9. https://doi.org/10.1016/j.micres.2015.11.008
  42. Beltran-Gracia E, Macedo-Raygoza G, Villafa-a-Rojas J, Martinez-Rodriguez A, Chavez-Castrillon YY, Espinosa-Escalante FM, Di Mascio P, Ogura T, Beltran-Garcia MJ. Production of lipopeptides by fermentation processes: endophytic bacteria, fermentation strategies and easy methods for bacterial selection. In: Fermentation Processes (Ed. Angela Jozala), InTech, 2017:199−222. https://doi.org/10.5772/64236
  43. Gond SK, Bergen MS, Torres MS, White JFJr. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol. Res. 2015; 172:79−87. https://doi.org/10.1016/j.micres.2014.11.004
  44. Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-of disease. Microbiol. Res. 2014; 169(7−8):533−40. https://doi.org/10.1016/j.micres.2013.12.001
  45. Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front. Microbiol. 2014; 5:636. https://doi.org/10.3389/fmicb.2014.00636
  46. Chowdhury SP, Hartmann A, Gao X, Borriss R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Front. Microbiol. 2015; 6:780. https://doi.org/10.3389/fmicb.2015.00780
  47. Jarvis FG, Johnson MJ. A glyco-lipide produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 1949; 71(12):4124–26. https://doi.org/10.1021/ja01180a073
  48. Chong H, Li Q. Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb. Cell Fact. 2017; 16(1):137. https://doi.org/10.1186/s12934-017-0753-2
  49. Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S. Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int. J. Mol. Sci. 2010; 11(12):5095−108. https://doi.org/10.3390/ijms11125095
  50. Sanchez L, Courteaux B, Hubert J, Kaufmann S, Renault JH, Clément C, Baillieul F, Dorey S. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require diferent signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 2012; 160(3):1630−41. https://doi.org/10.1104/pp.112.201913
  51. Borah SN, Goswami D, Sarma HK, Cameotra SS, Deka S. Rhamnolipid biosurfactant against Fusarium verticillioides to control stalk and ear rot disease of maize. Front. Microbiol. 2016; 7: 1505. https://doi.org/10.3389/fmicb.2016.01505
  52. Sha R, Meng Q. Antifungal activity of rhamnolipids against dimorphic fungi. J. Gen. Appl. Microbiol. 2016; 62(5):233−9. https://doi.org/10.2323/jgam.2016.04.004
  53. Kim SK, KimYC, Lee S, Kim JC, Yun MY, Kim IS. Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J. Agricult. Food Chem. 2011; 59:934–8. https://doi.org/10.1021/jf104027x
  54. Pirog TP, Konon AD, Sofilkanich AP, Iutinskaia GA. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl. Biochem. Microbiol. 2013; 49(4):360–7. https://doi.org/10.1134/S000368381304011X
  55. Choe E, Min DB. Chemistry of deep-fat frying oils. J. Food Sci. 2007; 72(5):77−86. https://doi.org/10.1111/j.1750-3841.2007.00352.x
  56. Totani N, Ono M, Burenjargal M, Ojiri Y. Carbonyl compounds vaporize from oil with steam during deep-frying. J. Oleo Sci. 2007; 56(9):449−56. https://doi.org/10.5650/jos.56.449
  57. Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant. Physiol. 2004; 134(1):307–19. https://doi.org/10.1104/pp.103.028712
  58. Cortes-Sanchez A, Hernandez-Sanchez H, Jaramillo-Flores M. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. Rec. 2013; 168(1):22–32. https://doi.org/10.1016/j.micres.2012.07.002
  59. Abalos A, Pinazo A, Infante MR, Casals M, Garcıa F, Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refnery wastes. Langmuir. 2001; 17(5):1367−71. https://doi.org/10.1021/la0011735
  60. Karpenko EV. [Scientific principles of the development of biotechnologies of surfactants with polyfunctional properties]. Thesis for the degree of Doctor of Technical Sciences (03.00.20); National University of Food Technologies. Kyiv; 2015. Ukrainian.