Mikrobiol. Z. 2018; 80(3):66-76.
doi: https://doi.org/10.15407/microbiolj80.03.066

Ability of Microscopic Fungi, Recommended for the Estimation
of Funginertness of Technical Materials, to form Hydrolases

Chuienko А.І., Pysmenna Yu.B.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. To estimate an activity of hydrolases of test cultures of microscopic fungi that is applied for tests from funginertness of technical wares and materials. Methods. Enzymatic activities (of complexes of cellulases, amylases, lipases and proteases) determined in accordance with the methods, based on reactions between dye, that bring into medium or on a colony and the product of curriculum of substrate and expected enzymatic index. Results. It has been edused that all investigational isolates were characterized by the presence at least of one enzymatic activity (cellulase, amylase, lipase or protease). Conclusions. It has been established that enzymatic activities of isolates, except for C. globosum of F-16714, did not depend on a their expiration and source of selection date. It has been educed that A. versicolor F-41469 had the highest values of cellulase and amylase activity, A. pullulans F-159 and C. cladosporioides F-41230 – cellulase and lipase, P. aurantiogriseum F-1644, P. chrysogenum F-16719 and P. funiculosum – amylase and lipase, H. resinae F-16724, P. variotii F-16724 – amylase, C. sphaerosphermum F-41232, F-2442 and P. ochrochloron F-16715 – lipase. It has been ascertained that swingeing majority of strains isolated from gypsum plasterboard are potential destructors of it basic components.

Keywords: funginertness, gypsum plasterboard, hydrolases, enzymatic index, biodestruction.

Full text (PDF, in English)

  1. Zaikov GE. Gorenie, destruktsiya i stabilizatsiya polimerov. St. Petersburg: Nauchnyye osnovy i tekhnologii; 2008. Russian.
  2. Bilay VI, Koval EZ. Aspergilly. Kyiv: Nauk. dumka; 1988. Russian.
  3. Koval EZ, Rudenko AV, Goncharuk VV. Penitsyliyi v navkolyshnomu seredovyshchi. Vol. 1. Kyiv: Nauk. dumka; 2014. Ukranian.
  4. Sergeev AYu, Sergeev YuV. Gribkovyie infektsii. 2nd ed. Moscow: BINOM; 2008. Russian.
  5. Smirnov VF, Semicheva AS, Smirnova ON, Pertseva AD. K voprosu otsenki gribostoykosti materialov v nekotoryih otechestvennyih standartnyih metodah ispyitaniy. Mikologiya i fitopatologiya. 2000; 34(6):50-5. Russian.
  6. Turkova ZA, Titkova OA. Vzaimootnosheniya vidov gribov, primenyaemyih dlya ispyitaniya tehnicheskih izdeliy i ih antibioticheskie svoystva. In: Mikroorganizmyi i nizshie rasteniya – razrushiteli materialov i izdeliy. Moscow: Nauka; 1979. p. 33-46. Russian.
  7. Feldman MS. Sravnitelnoe issledovanie aktivnosti nekotorih oksidoredyktaz i gidrolaz mikromicetov v svyazi s biopovrejdeniem promishlennih materialov. Thesis of PhD dissertation. Voronej; 1987. Russian.
  8. Lugauskas AYu, Repechkene YuP. Mikroskopicheskie gribyi, povrezhdayuschie polimernyie materialyi v estestvennyih usloviyah. In: Biologicheskoe povrezhdenie materialov. Vilnyus; 1979. p. 65-71. Russian.
  9. Egorov NS, editor. Promyishlennaya mikrobiologiya. Moscow: Vyissh. shkola; 1989. Russian.
  10. GOST 9.050-75. Varnish and paint coatings. Laboratory test methods to mould resistance. Moscow: Izd-vo standartov; 1975.
  11. GOST 9.085-78. Cooling lubricant. Bioresistance test methods. Moscow: Izd-vo standartov; 1978.
  12. GOST 9.052-88. Oils and greaeses. Laboratory test methods for mould resistance. Moscow: Izd-vo standartov; 1988.
  13. GOST 9.048–89. Technical items. Methods of laboratory tests for mould resistance. Moscow: Izd-vo standartov; 1989.
  14. GOST 9.049–91. Polymer materials and their components. Methods of laboratory tests for mould resistance. Moscow: Izd-vo standartov; 1992.
  15. Pismennaya YuB, Subbota AG, Nakonechnaya LT. Mikobiota pri izuchenie gribostoykosti gipsokartona. Mikrobiol. Z. 2015; 77(5):55-61. Russian.
  16. Bilay VI, editor. Metodyi eksperimentalnoy mikologii. Kyiv: Nauk. dumka; 1982. Russian.
  17. Hankin L, Anagnostakis SL. The use of solid media for detection of enzyme production by fungi. Mycologia. 1975; 67(3):597-11. https://doi.org/10.2307/3758395
  18. Rohrmann S, Molitoris HP. Screening for wood-degrading enzymes in marine fungi. Can. J. Bot. 1992; 70(10):2116-8. https://doi.org/10.1139/b92-263
  19. Colonia BSO, Chagas AF, jr. Screening and detection of extracellular cellulases (endo- and exo-glucanases) secreted by filamentous fungi isolated from soils using rapid tests with chromogenic dyes. Afr. J. Biotechnol. 2014; 52(13):4694-8.
  20. Florencio C, Couri S, Farinas CS. Correlation between agar plate screening and solidstate fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Research. 2012. https://doi.org/10.1155/2012/793708
  21. Lumi ACA, Faria C, Fernandes de Castro F, Regina de Souza S, dos Santos FC, da Silva CN, Tessmann DJ, et al. Fungi isolated from maize (Zea mays L.) grains and production of associated enzyme activities. Int. J. Mol. Sci. 2015; 16(7):15328-19.
  22. Kanevskaya IG. Biologicheskoe povrezhdenie promyshlennyh materialov. Leningrad: Nauka; 1984. Russian.
  23. Kurakov AV, Gevorkyan SA, Goginyan VB, Ozerskaya SM. Raznoobrazie i osobennosti sostava mikroskopicheskih gribov na sinteticheskih polimernyh materialah. Prikl. biohim. i mikrobiol. 2008; 44(2):232-4. Russian.
  24. Lugauskas A, Levinskaite L, Pečiulyte D. Micromycetes as deterioration agents of polymeric materials. Int. Biodeterior Biodegradation. 2003; 52(4):233-10. https://doi.org/10.1016/S0964-8305(03)00110-0
  25. Hummel, Hans-Ulrich, inventor. Gypsum product. patent PCT/EP2007/052934 (DE). 2007 Oct 4.