Mikrobiol. Z. 2018; 80(3):40-52.
doi: https://doi.org/10.15407/microbiolj80.03.040

Changes of Fatty Acid Composition of Chlorobium limicola IMV K-8 Cells
under the Influence of Copper (II) Sulfate

Segin T., Hnatush S., Maslovska O., Vasyliv O.

Ivan Franko National University of Lviv
4 Hrushevsky Str., Lviv, 79005, Ukraine

Aim. To investigate the changes of fatty acid composition of green sulphur bacteria Chlorobium limicola ІМV К-8 cells at the influence of copper (II) sulfate. Methods. Microbiological, biochemical, biometrical. Results. The increase of content of long chain saturated fatty acids of C. limicola ІМV К-8 cells, in particular pentadecanoic, hexadecanoic, heptadecanoic and octadecanoic acids was observed under the influence of cooper (II) sulfate in concentrations which caused decrease of biomass accumulation up to 70 %. Among the frst reactions of adaptation of C. limicola ІМV К-8 cells under these conditions are cis/trans isomerisation of monounsaturated fatty acids and synthesis of cyclopropane fatty acids. Maintenance of appropriate level of membrane fluidity is provided by branched chain fatty acids. Conclusions. Under the influence of copper (II) sulfate on C. limicola ІМV К-8 cells fatty acids composition of membranes is changed, which causes the increase of membranes fluidity, and, probably, is contributed to more effcient effux of Cu2+ions.

Keywords: green photosynthetic bacteria, Chlorobium limicola, Cu2+ ions, fatty acids.

Full text (PDF, in Ukrainian)

  1. Moroz O, Yavorska H, Muravel N, Klym I. [Reduction of ferrum (III) by sulfate reducing and sulfur reducing bacteria]. Studia biologica. 2012; 6(2):161–172. Ukrainian.
  2. Karpinets L, Lobachevska O, Baranov V, Diakiv S, Hnatush S. [Total content of nitrogen and heavy metals in the mosses gametophyte and in upper layer of technogenic substrates of the mine dumps]. Studia biologica. 2017; 11(1):101–108. Ukrainian.
  3. Mamatha M, Aravinda H, Puttaiah E, Manjappa S. Adsorption of ferrous and ferric ions in aqueous and industrial effluent onto Pongamia pinnata tree bark. Int. J. Chem. Mol. Nucl. Mater. Metallurg. 2012; 6(7):43–51.
  4. Moroz OM, Hudz SP, Podopryhora OI et al. [Heavy methals influence on growth and sulfate reduction of Desulfovibrio desulfuricans]. Sci. Bull. Uzhgorod Univ. (Ser. Biol.). 2009; 26:193–202. Ukrainian.
  5. Gorishnyi MB, Hudz SP, Hnatush SO. [Bacterial photosynthesis]. Lviv: Publishing center of Ivan Franko National University of Lviv; 2011. Ukrainian.
  6. Sehin TB, Hnatush SO, Gorishnyi MB. [The processes of lipid peroxidation in the cells of Chlorobium limicola IMV K-8 under the influence of copper (II) sulfate]. Visn. Dnipropetr. Univ. Ser. Biol. Ekol. 2016; 24(1):72–77. Ukrainian.
  7. Gueraud F, Atalay M, Bresgen N, et al. Chemistry and biochemistry of lipid peroxidation products. Free Rad. Res. 2010; 44(10):1098–1124. https://doi.org/10.3109/10715762.2010.498477
  8. Stadtman E, Levine R. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 2003; 25:207–218. https://doi.org/10.1007/s00726-003-0011-2
  9. Baysse C, O'Gara F. Role of membrane structure during stress signaling and adaptation in Pseudomonas. In: Ramos J, Filloux A, editors. Pseudomonas. New York: Springer; 2007. p. 193–224. https://doi.org/10.1007/978-1-4020-6097-7_7
  10. Loffhagen N, Hartig C, Babel W. Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids. Biosci. Biotechnol. Biochem. 2004; 68(4):317–323. https://doi.org/10.1271/bbb.68.317
  11. Hartig C, Loffhagen N, Harms H. Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. App. Environ. Microbiol. 2005; 71(4):1915–1922. https://doi.org/10.1128/AEM.71.4.1915-1922.2005
  12. Heipieper H, Diefenbach R, Kewelon H. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Env. Microbiol. 1992; 58(6):1847–1852.
  13. Mrozik A, Piotrowska-Seget Z, Labuzek S. Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas. Microbiol. Res. 2004; 159:87–95. https://doi.org/10.1016/j.micres.2004.02.001
  14. Heipieper H, Meinhardt F, Segura A. The cis–trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 2003; 229:1–7. https://doi.org/10.1016/S0378-1097(03)00792-4
  15. Murinova S, Dercova K. Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int. J. Microbiol. 2014; 2014:1–16.
  16. Unell M, Kabelitz N, Jansson J, Heipieper H. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol. Lett. 2007; 266:138–143. https://doi.org/10.1111/j.1574-6968.2006.00502.x
  17. Poger D. A ring to rule them all: the effect of cyclopropane fatty acids on the fluidity of lipid bilayers. J. Phys. Chem. B. 2015; 119(17):5487–5495. https://doi.org/10.1021/acs.jpcb.5b00958
  18. Ramos J, Cuenca M, Molina-Santiago C, et al. Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol. Rev. 2015; 39(4):555–566. https://doi.org/10.1093/femsre/fuv006
  19. Grogan D, Cronan J. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 1997; 61(4):429–441.
  20. Duldhardt I, Gaebel J, Chrzanowski L, et al. Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition. Microbial Biotechnol. 2010; 3(2):201–209. https://doi.org/10.1111/j.1751-7915.2009.00124.x
  21. Markowicz A, Plociniczak T, Piotrowska-Seget Z. Response of bacteria to heavy metals measured as changes in FAME profiles. Pol. J. Environ. Stud. 2010; 19(5):957–965.
  22. Maslovska OD, Hnatush SO, Halushka AA. [Fatty acid composition of Desulfuromonas acetoxidans IMV B-7384 cells under the influence of ferric citrate]. Studia biologica. 2014; 8(3-4):87–98. Ukrainian.
  23. Biebl H, Pfennig N. Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch. Microbiol. 1977; 112:115–117. https://doi.org/10.1007/BF00446664
  24. Hnatush S, Goryshnyi M, Segin T. [Photosynthetic green sulfur bacteria, isolated from Yavoriv lake] Inter-medykal. J. 2014; 3:63−68. Russian.
  25. Rozanova EP. Metodyi kultivirovaniya i identifikatsii anaerobnyih bakteriy, vosstanavlivayuschih seru i eyo okislennyie soedineniya. Moskva: Institut mikrobiologii AN SSSR; 1979. Russian.
  26. Bligh E, Dyer W. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 1959; 37:911–917. https://doi.org/10.1139/y59-099
  27. Guerzoni M, Lanciotti R, Cocconcelli P. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology. 2001; 147:2255–2264. https://doi.org/10.1099/00221287-147-8-2255
  28. Lakin GF. Biometriya. Moskva: Vyissh. Shkola;1990. Russian.
  29. Kaneda T. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991; 55(2):288–302.
  30. Zhang Y. Transcriptional regulation in bacterial membrane lipid synthesis. J. Lipid Res. 2009; 50:115–119. https://doi.org/10.1194/jlr.R800046-JLR200
  31. Nú-ez-Cardona MT. Fatty acids analysis of photosynthetic sulfur bacteria by gas chromatography. In: Bekir S, editor. Gas Chromatography – biochemicals, narcotics and essential oils. InTech; 2012. p. 118–138.
  32. Guckert JB, Hood MA, White DC. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 1986; 52:794–801.
  33. Doreswamy K, Shrilatha B, Rajeshkumar T, Muralidhara H. Nickel induced oxidative stress in testis of mice: evidence of DNA damage and genotoxic effects. J. Androl. 2004; 25(6):996–1003. https://doi.org/10.1002/j.1939-4640.2004.tb03173.x
  34. Frostegard A, Tunlid A, Baath E. Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol. Biochem. 1996; 28:55–63. https://doi.org/10.1016/0038-0717(95)00100-X
  35. Li Y, Trush M. DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu[II]/Cu[I] redox cycle and reactive oxygen generation. Carcinogenesis. 1993; 14(7):1303–1311. https://doi.org/10.1093/carcin/14.7.1303
  36. Zhang Y. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 2008; 6:222–233. https://doi.org/10.1038/nrmicro1839
  37. Berlett B, Stadtman E. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997; 272(33):20313–20316. https://doi.org/10.1074/jbc.272.33.20313