Mikrobiol. Z. 2018; 80(3):29-39. Russian.
doi: https://doi.org/10.15407/microbiolj80.03.029

Polyphasic Taxonomic Analysis and Biologically Active Substances
of Strain Pseudomonas sp. 2303

Klochko V.V., Chugunova К.О., Avdeeva L.V.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Purpose. Determination of Pseudomonas sp. 2303 taxonomic status and study of its biological activity. Methods. Isolation of bacterial DNA, amplification and sequence of 16S rRNA gene, study of cultural, morphological, physiological and biochemical properties of strain and its antagonistic activity. Transmission electronic microscopy, GC/MS-analysis. Results. Phylogenetic analysis of 16S rRNA gene sequence of strain Pseudomonas sp. 2303 (1334 bp) in comparison with other genus Pseudomonas representatives established 100 % of identity with the type strain P. synxantha АТСС 9890Т gene and with the fluorescent species P. gessardii and P. libanensis. The latter differed from the studied strain in their phenotypic properties. The fatty acids analysis has shown that Pseudomonas sp. 2303 had in its composition characteristic for pseudomonads C16:0, C16:1, C18:1, 2OHC12:0 fatty acids сontent of which was similar with the type strain P. synxantha АТСС 9890Т. Strain Pseudomonas sp. 2303 had shown high activity against bacteria and fungi. Conclusions. According to polyphasic taxonomic analysis results the studied strain Pseudomonas sp. 2303 was identified as P. synxantha and included to Ukrainian Collection of Microorganisms as P. synxantha UCM В-399  (accession number in Genbank – MF196188). Some diagnostic characteristics were proposed (phenazine-1-carboxylic acid synthesis, inability of levan production from sucrose, assimilation of some carbon sources) which allow to differ P. synxantha from closely related species.

Keywords: polyphasic taxonomic analysis, Pseudomonas synxantha, P. gessardii, P. libanensis, fatty acids composition, antagonistic activity, phenazine-1-carboxylic acid synthesis.

Full text (PDF, in Russian)

  1. Palleroni N. The Pseudomonas Story. Environ. Microbiol. 2010; 12(6):1377–83. https://doi.org/10.1111/j.1462-2920.2009.02041.x
  2. Bernd H, Rehm A, editors. Pseudomonas: Model Organism, Pathogen, Cell Factory. Verlag GmbH. Wiley-VCH; 2008.
  3. Parte A. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 2014; 613–16. https://doi.org/10.1093/nar/gkt1111
  4. Kahlon R. Pseudomonas: Molecular and Applied Biology. Springer International Publishing Switzerland; 2016. https://doi.org/10.1007/978-3-319-31198-2
  5. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 1996; 602:407–38.
  6. Kiprianova EA, Klochko VV, Zelena LB, Churkina LN, Avdeeva LV. Pseudomonas batumici sp. nov., the antibiotic-producing bacteria isolated from soil of the Caucasus Black Sea coast. Microbiol Z. 2011; 73(5):3–8.
  7. Smirnov VV, Kiprianova EA. [Bacteria of the Pseudomonas genus]. Naukova dumka; 1990. Russian.
  8. Verhille S, Baida N, Dabboussi F, Hamze M, Izard D, Leclerc H. Pseudomonas gessardii sp. nov. and Pseudomonas migulae sp. nov., two new species isolated from natural mineral waters. Int J Syst Bacteriol. 1999; 49(4):1559-72. https://doi.org/10.1099/00207713-49-4-1559
  9. Dabboussi F, Hamze M, Elomari M, Verhille S, Baida N, Izard D, Leclerc H. Pseudomonas libanensis sp. nov., a new species isolated from Lebanese spring waters. Int. J Syst Bacteriology. 1999; 49:1091-101. https://doi.org/10.1099/00207713-49-3-1091
  10. Ikemoto S, Kuraishi H, Komagata K, Ajuma R, Suto T, Murooka H. Cellular fatty acid composition in Pseudomonas species. J Gen Appl Microbiol. 1978; 24:199–213. https://doi.org/10.2323/jgam.24.199
  11. Klochko VV, Zelena LB, Chugunova KO, Tsarenko PM, Kriuchkova LO, Pasichnyk LA, Avdeeva LV, Pidgorsky VS. [Pseudomonas sp. strain 2303 as active phytopathogenic antagonist and its antibiotic characteristics]. Reports of the National Academy of Sciences of Ukraine. 2014; 10:161–166. Ukrainian. https://doi.org/10.15407/dopovidi2014.10.161
  12. Approved lists of bacterial names. Int J Syst. Bacteriol. 1980; 30:225-420. https://doi.org/10.1099/00207713-30-1-225
  13. Brenner D, Krieg N, Staley J, Garrity G. Bergey's Manual of Systematic Bacteriology. Vol. 2, parts A, B and C, Springer-Verlag, New York, NY; 2005.
  14. Anzai Y, Kim H, Park J, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol. 2000; 50:1563–89. https://doi.org/10.1099/00207713-50-4-1563
  15. Wechter W, Begum D, Presting G, Kim J, Wing R, Kluepfel D. Physical mapping, BAC-end sequence analysis, and marker tagging of the soilborne nematicidal bacterium, Pseudomonas synxantha BG33R. OMICS. 2002; 6:11-21. https://doi.org/10.1089/15362310252780807
  16. Mukherjee K, Mandal S, Mukhopadhyay B, Mandal N, Sil A. Bioactive compound from Pseudomonas synxantha inhibits the growth of Mycobacteria. Microbiol Res. 2014; 169:794–802. https://doi.org/10.1016/j.micres.2013.12.005
  17. Chincholkar S, Thomashow L, editors. Microbial Phenazines: Biosynthesis, Agriculture and Health. Springer-Verlag Berlin: Heidelberg; 2013. https://doi.org/10.1007/978-3-642-40573-0
  18. Mavrodi D, Mavrodi O, Parejko J. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol. 2012; 78:804–812. https://doi.org/10.1128/AEM.06784-11
  19. Mavrodi O, Mavrodi D, Parejko J. Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol. 2012; 78:3214–20. https://doi.org/10.1128/AEM.07968-11