Mikrobiol. Z. 2018; 80(2):117-135. Russian.
doi: https://doi.org/10.15407/microbiolj80.02.117

Application of Optical Biosensor Technologies in the Study
of Molecular Interactions of Nucleic Acids and Bioanalytics

Zatovska T.V., Baranova G.V., Zagorodnya S.D.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

The review provides literature data on the application of the technique of surface plasmon resonance (SPR) of nucleic acids in medical diagnostics, environmental monitoring. The principle of the SPR method and its advantages for analyzing the molecular interactions, the types of SPR sensors and the concepts of their basic characteristics are outlined. The principle of SPR analysis of nucleic acids and ways of immobilization of probes on the surface of biosensors are considered: modification of surface by functional layers, the application of thiolated oligonucleotides, the use of biotinylated probes and biotinstreptavidin interaction. The main approaches for increasing the sensitivity and specificity of DNA sensors are characterized: PCR amplification, application of gold nanoparticles, enzymes, combinations of these methods. Examples of DNA sensors developed for application in clinical analysis are given, in particular, sensors for detecting point mutations causing oncological and hereditary diseases are described. Biosensors for the analysis of micro-RNA, detection of point mutations causing bacterial resistance to antibiotics, for detection of DNA markers of human and plant pathogenic bacteria, as well as DNA markers of genetically modified organisms are reviewed. Examples of biosensors using aptamers for the diagnosis of viral infections are considered. It is concluded that the application of the SPR-based DNA sensors in bioanalytics is promising and the development of new strategies that allow measurements in real biological samples is necessary.

Keywords: surface plasmon resonance, DNA sensors, nucleic acids, hybridization.

Full text (PDF, in Russian)

  1. Homola J. Surface Plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008; 108(2):462-93. https://doi.org/10.1021/cr068107d
  2. Piliarik M, Vaisocherova H, Homola J. Surface plasmon resonance biosensing. Methods Mol Biol. 2009; 503:65-88. https://doi.org/10.1007/978-1-60327-567-5_5
  3. Sípová H, Homola J. Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta. 2013; 773:9-23. https://doi.org/10.1016/j.aca.2012.12.040
  4. D'Agata R, Spoto G. Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem. 2013; 405(2-3):573-84. https://doi.org/10.1007/s00216-012-6563-9
  5. Mariani S, Minunni M. Surface plasmon resonance applications in clinical analysis. Anal Bioanal Chem. 2014; 406(9-10):2303-23. https://doi.org/10.1007/s00216-014-7647-5
  6. Minunni M, Tombelli S, Mariotti E, Mascini M. Biosensors as new analytical tool for detection of Genetically Modified Organisms (GMOs). Fresenius J Anal Chem. 2001; 369(7-8):589-93. https://doi.org/10.1007/s002160100761
  7. Gambari R, Feriotto G. Surface plasmon resonance for detection of genetically modified organisms in the food supply. J AOAC Int. 2006; 89(3):893-7.
  8. Scarano S, Mascini M, Turner A, Minnuni M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron. 2010; 25:957-66. https://doi.org/10.1016/j.bios.2009.08.039
  9. Thomsen V, Schatzlein D, Mercuro D. Limits of Detection in Spectroscopy. Spectroscopy 2003; 18(12):112-4.
  10. Corradini R, Feriotto G, Sforza S, Marchelli R, Gambari R. Enhanced recognition of cystic fibrosis W1282X DNA point mutation by chiral peptide nucleic acid probes by a surface plasmon resonance biosensor. J. Mol. Recognit. 2004; 17(1):76-84. https://doi.org/10.1002/jmr.646
  11. Joung H, Lee N, Lee S, Ahn J, Shin Y, Choi H, Lee C, et al. High sensitivity detection of 16S rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal Chim Acta. 2008; 630(2):168-73. https://doi.org/10.1016/j.aca.2008.10.001
  12. Fang S, Lee H, Wark A, Corn R. Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc. 2006; 128(43):14044-6. https://doi.org/10.1021/ja065223p
  13. Rachkov O, Ushenin Yu, Holodova Yu, Negrutska V, Palchikovska L, Soldatkin O. Investigation of possibility to use the method of surface plasmon resonance for study of interactions between acridone derivatives and DNA. Visnyk of Lviv Univ. 2008; 47:42-8.
  14. Steel A, Levicky R, Herne T, Tarlov M. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys J. 2000; 79(2):975-81. https://doi.org/10.1016/S0006-3495(00)76351-X
  15. Lee H, Li Y, Wark A, Corn R. Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays. Anal Chem. 2005; 77(16):5096-100. https://doi.org/10.1021/ac050815
  16. Mannelli I, Lecerf L, Guerrouache M, Goossens M, Millot M, Canva M. DNA immobilisation procedures for surface plasmon resonance imaging (SPRI) based microarray systems. Biosens Bioelectron. 2007; 22(6):803-9. https://doi.org/10.1016/j.bios.2006.02.022
  17. Herne T, Tarlov M. Characterization of DNA probes immobilized on gold. Journal of the Am. Chem Soc. 1997; 119(38):8916-20. https://doi.org/10.1021/ja9719586
  18. Peeters S, Stakenborg T, Reekmans G, Laureyn W, Lagae L, Van Aerschot A, Van Ranst M. Impact of spacers on the hybridization efficiency of mixed self-assembled DNA/alkanethiol films. Biosens Bioelectron. 2008; 24(1):72-7. https://doi.org/10.1016/j.bios.2008.03.012
  19. Mark S, Sandhyarani N, Zhu C, Campagnolo C, Batt C. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface. Langmuir. 2004; 20(16):6808-17. https://doi.org/10.1021/la0495276
  20. Yu Y, Feng C, Caminade A, Majoral J, Knoll W. The detection of DNA hybridization on phosphorus dendrimer multilayer films by surface plasmon field enhanced-fluorescence spectroscopy. Langmuir. 2009; 25(23):13680-4. https://doi.org/10.1021/la901988r
  21. Zezza F, Pascale M, Mulè G, Visconti A. Detection of Fusarium culmorum in wheat by a surface plasmon resonance-based DNA sensor. J Microbiol Methods. 2006; 66(3):529-37. https://doi.org/10.1016/j.mimet.2006.02.003
  22. Feriotto G, Gardenghi S, Bianchi N, Gambari R. Quantitation of Bt-176 maize genomic sequences by surface plasmon resonance-based biocpecific interaction analysis of multiplex polymerase chain reaction (PCR). J Agric Food Chem. 2003; 51(16):4640-46. https://doi.org/10.1021/jf0341013
  23. Wang R, Minunni M, Tombelli S, Mascini M. A new approach for the detection of DNA sequences in amplified nucleic acids by a surface plasmon resonance biosensor. Biosens Bioelectron. 2004; 20(3):598-605. https://doi.org/10.1016/j.bios.2004.03.013
  24. Thaxton C, Georganopoulou D, Mirkin C. Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta. 2006; 363(1-2):120-6. https://doi.org/10.1016/j.cccn.2005.05.042
  25. Xu H, Mao X, Zeng Q, Wang S, Kawde AN, Liu G. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem. 2009; 81(2):669-75. https://doi.org/10.1021/ac8020592
  26. Su X, Teh H, Aung K, Zong Y, Gao Z. Femtomol SPR detection of DNA-PNA hybridization with the assistance of DNA-guided polyaniline deposition. Biosens Bioelectron. 2008; 23(11):1715-20. https://doi.org/10.1016/j.bios.2008.02.004
  27. Rachkov A, Patskovsky S, Soldatkin A, Meunier M. Surface plasmon resonance detection of oligonucleotide sequences of the rpoB genes of Mycobacterium tuberculosis. Talanta. 2011; 85(4):2094-9. https://doi.org/10.1016/j.talanta.2011.07.032
  28. Ding X, Yan Y, Li S, Zhang Y, Cheng W, Cheng Q, Ding S. Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal Chim Acta. 2015; 874:59-65. https://doi.org/10.1016/j.aca.2015.03.021
  29. Matsishin M, Ushenin Iu, Rachkov A, Solatkin A. SPR detection and discrimination of the oligonucleotides related to the normal and the hybrid bcr-abl genes by two stringency control strategies. Nanoscale Res Lett. 2016; 11(1):19. https://doi.org/10.1186/s11671-016-1226-y
  30. Carrascosa L, Calle A, Lechuga L. Label-free detection of DNA mutations by SPR: application to the early detection of inherited breast cancer. Anal. Bioanal. Chem. 2009; 393:1173-82. https://doi.org/10.1007/s00216-008-2555-1
  31. Sípová H, Springer T, Homola J. Streptavidin-enhanced assay for sensitive and specific detection of single nucleotide polymorphism in TP53. Anal Bioanal Chem. 2011; 399(7):2343-50. https://doi.org/10.1007/s00216-010-3863-9
  32. Jiang T, Minunni M, Wilson P, Zhang J, Turner A, Mascini M. Detection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor. Biosens Bioelectron. 2005; 20(10):1939-45. https://doi.org/10.1016/j.bios.2004.08.040
  33. Feriotto G, Corradini R, Sforza S, Bianchi N, Mischiati C, Marchelli R, Gambari R. Peptide nucleic acids and biosensor technology for real-time detection of the cystic fibrosis W1282X mutation by surface plasmon resonance. Lab Invest. 2001; 81(10):1415-27. https://doi.org/10.1038/labinvest.3780355
  34. Li Y, Wark A, Lee H, Corn R. Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem. 2006; 78(9):3158-64. https://doi.org/10.1021/ac0600151
  35. Li Y, Yan Y, Lei Y, Zhao D, Yuan T, et al. Surface plasmon resonance biosensor for label-free and highly sensitive detection of point mutation using polymerization extension reaction. Colloids Surf B Biointerfaces. 2014; 12:15-20. https://doi.org/10.1016/j.colsurfb.2014.04.007
  36. D'Agata R, Breveglieri G, Zanoli L, Borgatti M, Spoto G, Gambari R. Direct detection of point mutations in nonamplified human genomic DNA. Anal Chem. 2011; 83(22):8711-7. https://doi.org/10.1021/ac2021932
  37. Bartel D. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116:281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  38. Sípová H, Zhang S, Dudley A, Galas D, Wang K, Homola J. Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem. 2010; 82(24):10110-5. https://doi.org/10.1021/ac102131s
  39. Rachkov A, Patskovsky S, Soldatkin A, Meunier M. Discrimination of single base mismatched oligonucleotides related to the rpoB gene of Mycobacterium tuberculosis using a surface plasmon resonance biosensor. Biotechnology and Applied Biochemistry. 2013; 60(4):453-8. https://doi.org/10.1002/bab.1101
  40. Kai E, Ikebukuro K, Hoshina S, Watanabe H, Karube I. Detection of PCR products of Escherihia coli O157:H7 in human stool samples using surface plasmon resonance (SPR). FEMS Immunol Med Microbiol. 2000; 29(4):283-8. https://doi.org/10.1111/j.1574-695X.2000.tb01535.x
  41. Piliarik M, Parova L, Homola J. High-throughput SPR sensor for food safety. Biosens Bioelectron. 2009; 24:1339-404. https://doi.org/10.1016/j.bios.2008.08.012
  42. Wang J, Luo Y, Zhang B, Chen M, Huang J, Zhang K, et al. Rapid label-free identification of mixed bacterial infections by surface plasmon resonance. J Transl Med. 2011; 9:85. https://doi.org/10.1186/1479-5876-9-85
  43. Foudeh A, Trigui H, Mendis N, Faucher S, Veres T, Tabrizian M. Rapid and specific SPRi detection of L. pneumophila in complex environmental water samples. Anal Bioanal Chem. 2015; 407(18):5541-5. https://doi.org/10.1007/s00216-015-8726-y
  44. Florschütz K, Schröter A, Schmieder S, Chen W, Schweizer P, Sonntag F, Danz N, et al., 'Phytochip': on-chip detection of phytopathogenic RNA viruses by a new surface plasmon resonance platform. J Virol Methods. 2013; 189:80-6. https://doi.org/10.1016/j.jviromet.2013.01.008
  45. Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron. 2015; 71:230-42. https://doi.org/10.1016/j.bios.2015.04.041
  46. Zhou W, Huang P, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst. 2014; 139(11):2627-40. https://doi.org/10.1039/c4an00132j
  47. Wandtke T, Woźniak J, Kopiński P. Aptamers in diagnostics and treatment of viral infections. Viruses. 2015; 7(2):751-80. https://doi.org/10.3390/v7020751
  48. Kumar P. Monitoring intact viruses using aptamers. Biosensors (Basel). 2016; 6(3):40. https://doi.org/10.3390/bios6030040
  49. Wang R, Zhao J, Jiang T, Kwon Y, Lu H, Jiao P, Liao M, Li Y. Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J Virol Methods. 2013; 189(2):362-9. https://doi.org/10.1016/j.jviromet.2013.03.006
  50. Nguyen V, Seo H, Kim B, Kim S, Song C, Gu M. Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosens Bioelectron. 2016; 86:293-300. https://doi.org/10.1016/j.bios.2016.06.064