Mikrobiol. Z. 2018; 80(2):14-27. Ukrainian.
doi: https://doi.org/10.15407/microbiolj80.02.014

Antimicrobial and Anti-adhesive Activity of Surfactants Synthesized
by Acinetobacter calcoaceticus IMV B-7241 on Technical Glycerol

Pirog T.P.1,2, Lutsai D.A.1, Shevchuk T.A.2, Iutynska G.O.2, Elperin I.V.1

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. Comparison of biological properties (antimicrobial and anti-adhesive activity, including role in bioflms destruction) of surfactants Acinetobacter calcoaceticus IMV B-7241, synthesized on purifed and technical glycerol (waste of biodiesel production). Methods. The surfactants were extracted from supernatant of cultural liquid with a mixture of chloroform and methanol (2 : 1). The number of adherent cells and the degree of bioflm destruction were determined by the spectrophotometric method, the antimicrobial properties of the surfactants were analyzed by the minimum inhibitory concentration. Results. The antimicrobial activity of A. calcoaceticus IMV B-7241 surfactants synthesized on technical glycerol was 1 − 2 orders lower, adhesion of test cultures on abiotic materials treated with such preparations was 1.2 − 4 times lower and degree of bacterial bioflms destruction − in 1.3 − 4 times less in comparison with the parameters established for surfactants, obtained on medium with equimolar by carbon concentration of purifed glycerol. The decreasing antimicrobial and anti-adhesive activity of the surfactants may be due to the inhibitory efect of K+ and Na+ excess concentration (components of technical glycerol) on the activity of NADP+-dependent glutamate dehydrogenase: in the presence of 50 ‒ 100 mM of potassium and sodium cations enzymatic activity decreased in 1.2−1.8 times. Conclusions. Despite the lower antimicrobial and anti-adhesive activity of surfactants synthesized by A. calcoaceticus IMV B-7241 on waste of biodiesel production, these values (minimum inhibitory concentrationі 0.96 − 15.2 μg/ml, degree of bioflms destruction by 50 % at surfactants concentration of 124 μg/ml) are comparable with those established for known microbial surface-active aminolipids.

Keywords: Acinetobacter calcoaceticus ІМВ В-7241, surfactants, biological properties, waste of biodiesel production.

Full text (PDF, in Ukrainian)

  1. Pirog TP, Savenko IV, Shevchuk TA. [Effect of cultivation conditions of Acinetobacter calcoaceticus IMV B-7241 on surfactants antiadhesive properties]. Mikrobiol. Z. 2016; 78(1):2−12. Russian.
  2. Pirog TP, Savenko IV, Shevchuk TA, Krutous NV, Iutynska GO. [Antimicrobial properties surfactants synthesized under different cultivation conditions of Acinetobacter calcoaceticus IMV B-7241]. Mikrobiol. Z. 2016; 78(3):2–12. Ukrainian.
  3. Pirog T, Shulyakova M, Soflkanych A, Shevchuk T, Maschenko O. Biosurfactant synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241, Nocardia vaccinii IMV B-7405 on byproduct of biodiesel production. Food Bioprod. Proces. 2015; 93(1):11−8. https://doi.org/10.1016/j.fbp.2013.09.003
  4. Ciriminna R, Pina CD, Rossi M, Pagliaro M. Understanding the glycerol market. Eur. J. Lipid Sci. Technol. 2014; 116 (10):1432–9. https://doi.org/10.1002/ejlt.201400229
  5. Garlapati VK, Shankar U, Budhiraja A. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol. Rep. (Amst). 2015; 9:9−14. https://doi.org/10.1016/j.btre.2015.11.002
  6. Pirog TP, Antonuk SI, Karpenko EV, Shevchuk TA. The infuence of conditions of Acinetobacter calcoaceticus K-4 strain cultivation on surface-active substances synthesis. Appl. Biochem. Microbiol. 2009; 45(3):272−8. https://doi.org/10.1134/S0003683809030065
  7. Janek T, Lukaszewicz M, Krasowska A. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol. 2012; 12:24. https://doi.org/10.1186/1471-2180-12-24
  8. Gomes M-ZV, Nitschke M. Evaluation of rhamnolipids surfactants as agents to reduce the adhesion of Staphylococcus aureus to polystyrene surfaces. Lett. Appl. Microbiol. 2012; 49(1):960–5.
  9. Sakamoto N, Kotre AM, Savageau MA. Glutamate dehydrogenase from Escherichia coli: purification and properties. J. Bacteriol. 1975; 124(2):775−83.
  10. Bradford M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72(3):248–54. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Cortes-Sanchez A, Hernandez-Sanchez H, Jaramillo-Flores M. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. Res. 2013; 168(1):22–32. https://doi.org/10.1016/j.micres.2012.07.002
  12. Cochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med. Res. Rev. 2016, 36(1):4–31. https://doi.org/10.1002/med.21321
  13. Pirog TP, Savenko IV, Lutsay DA. Microbial surface-active substances as antiadhesive agents. Biotechnologia acta. 2016; 9(3):7−22.
  14. Pirog TP, Shevchuk TA, Antoniuk SI, Kravchenko EYu., Iutinskaia GA. [Effect of univalent cations on synthesis of surfactants by Acinetobacter calcoaceticus IMV B-7241]. Mikrobiol. Z. 2013; 75(2): 10−20. Russian.
  15. Santos DK., Rufno RD, Luna JM, Santos VA, Sarubbo LA. Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016; 17(3). https://doi.org/10.3390/ijms17030401
  16. Rodrigues L, Banat IM, Teixeira J, Oliveira R. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 2006; 57(4):609–18. https://doi.org/10.1093/jac/dkl024
  17. Kalyani R, Bishwambhar M, Suneetha V. Recent potential usage of surfactant from microbial origin in pharmaceutical and biomedical arena: a perspective. Int. Res. J. Pharm. 2011; 2(8):11–5.
  18. Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl. Microbiol. Biotechnol. 2012; 93(3):1325−35. https://doi.org/10.1007/s00253-011-3766-5
  19. Anand P, Saxena RK. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. N. Biotechnol. 2012; 29 (2):199−205. https://doi.org/10.1016/j.nbt.2011.05.010
  20. Pott RW, Howe CJ, Dennis JS. The purifcation of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Bioresour. Technol. 2014; 152:464−70. https://doi.org/10.1016/j.biortech.2013.10.094
  21. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 2005; 100(3):260−5. https://doi.org/10.1263/jbb.100.260
  22. Moon C, Ahn JH, Kim SW, Sang BI, Um Y. Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms. Appl. Biochem. Biotechnol. 2010; 161(1−8):502−10.
  23. Pirog TP, Nikituk LV, Iutynska GO. [Biological properties of Nocardia vaccinii IMV B-7405 surfactants synthesized on byproduct of biodiesel production]. Mikrobiol. Zh. 2016; 78(5):12–20. Ukrainian.
  24. Bhuiya MW, Sakuraba H, Kujo C, Nunoura-Kominato N, Kawarabayasi Y, Kikuchi H, Ohshima T. Glutamate dehydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1: enzymatic characterization, identification of the encoding gene, and phylogenetic implications. Extremophiles. 2000; 4(6):333−41. https://doi.org/10.1007/s007920070002
  25. Sharma D, Mandal SM, Manhas RK. Purification and characterization of a novel lipopeptide from Streptomyces amritsarensis sp. nov. active against methicillin-resistant Staphylococcus aureus. AMB Express. 2014; 4.
  26. Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl. Microbiol. Biotechnol. 2009; 83(3):541–53. https://doi.org/10.1007/s00253-009-1987-7
  27. Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf. B. Biointerfaces. 2011; 85(2): 174–81. https://doi.org/10.1016/j.colsurfb.2011.02.026
  28. Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat. Rev. Microbiol. 2011; 9(2):109–18. https://doi.org/10.1038/nrmicro2475
  29. Singh AK, Rautela R, Cameotra SS. Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb. Cell Fact. 2014; 13. https://doi.org/10.1186/1475-2859-13-67
  30. Kalia VC, Prakash J, Koul S. Biorefinery for glycerol rich biodiesel industry waste. Indian J. Microbiol. 2016; 56(2): 113−25. https://doi.org/10.1007/s12088-016-0583-7