Mikrobiol. Z. 2018; 80(1):27-35. Ukrainian.
doi: https://doi.org/10.15407/microbiolj80.01.027

Influence of Pantoea agglomerans Lipopolisaccharides on the Activity of Bacillus Proteases

Dzyublyuk N.A., Varbanets L.D., Bulyhina T.V.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

The aim of this work was to investigate the influence of lipopolysaccharides (LPS) of a number of strains of the species Pantoea agglomerans on fibrinolytic, collagenase and elastase activity of Bacillus proteases. Methods. Elastase activity was determined colorimetrically by measuring of the change in the color intensity of the solution during enzymatic hydrolysis of elastin. To establish the collagenase activity the optical density of the solution was measured after the reaction of the collagen cleavage products with the ninhydrin reagent. Fibrinolytic activity was identified after the formation of fibrin cleavage products. Results and conclusions. The results obtained showed that the most active were LPS of two strains of P. agglomerans: 8674 and P324. LPS of P. agglomerans 8674 increased the fbrinolytic activity of peptidase 1 of B. thuringiensis IMV B-7324 by about 4 times, the elastolytic activity of B. thuringiensis IMV B-7465 peptidase 1 was doubled, and the collagenase activity of B. thuringiensis IMV B-7324 peptidase 2 was increased by 1.5 times. Whereas, P. agglomerans P324 LPS showed a narrower spectrum of stimulating effect on peptidase activity: it increased the fibrinolytic activity of peptidase 1 B. thuringiensis IMV B-7324 and 3 times peptidase 2 Bacillus sp. P3. Further research will be aimed on elucidation of some mechanisms of the action of gram-negative bacteria LPS on the activity of bacilli.

Keywords: peptidase, fibrinolytic, collagen and elastase activity, Bacillus, lipopolysaccharides, Pantoea agglomerans.

Full text (PDF, in Ukrainian)

  1. Varbanets LD, Matselukh OV. [Proteolytic enzymes of microorganisms and methods of their investigations]. Kiyv: 2008; 108 s. Ukrainian.
  2. Novak VL, Oborin OM. [Endogenous intoxication syndrome, sepsis and multiple organ failure: pathophysiological and clinical aspects of the problem literature review)]. Z. AMN Ukraine. 2009; 15(2):263-275. Ukrainian.
  3. Dem'yanenko SA, Romanenko IG, Levitskii AP. [The infuence of intestinal endotoxine on the level of biochemical markers of infammation in mucous membrane of oral cavity in rats]. Visnik stomatologii. 2010; 3:3-6. Ukrainian.
  4. Ekuni D, Yamamoto T, Yamanaka R, Tachibana K, Watanabe T. Proteases augment the efects of lipopolysaccharide in rat gingiva. J. Periodont. Res. 2003; 38(6):591–596. https://doi.org/10.1034/j.1600-0765.2003.00694.x
  5. Tagawa K, Yoshihara T, Shibata T, Kitazaki K, Endo Y, Fujita T, Koshiba T, Kawabata S. Microbe-specifc C3b deposition in the horseshoe crab complement system in a C2/factor B-dependent or -independent manner. PLoS One. 2012;7(5): e36783. https://doi.org/10.1371/journal.pone.0036783
  6. Jackson AD, Smith VJ. LPS-sensitive protease activity in the cells of the solitary ascidian, Ciona intestinalis (L). Comp. Biochem. Physiol. 1993; 106B(3):505-512. https://doi.org/10.1016/0305-0491(93)90124-N
  7. Kramer RA, Brandenburg K, Vandeputte-Rutten L, Werkhoven M, Gros P, Dekker N, Egmond MR. Lipopolysaccharide regions involved in the activation of Escherichia coli outer membrane protease OmpT. Eur. J. Biochem. 2002; 269:1746–1752. https://doi.org/10.1046/j.1432-1327.2002.02820.x
  8. Matselyukh OV, Varbanets' LD, Ivanitsa VO. Pat. 97906 Ukraina, MPK C 12N 1/20. [Strain Bacillus thuringiensis IMV B-7324 – producer of extracellular elastase] – UA 97906 C2; Publ. 26.03.2012. Byul. N6. Ukrainian.
  9. Matselyukh OV. [Obtaining of mutants of Bacillus sp. with enhances elastase production]. Biotekhnologiya. 2010; 3(2):42-47. Ukrainian.
  10. Nidialkova N.A., Varbanets L.D., Ivanitsa V.O. Pat. 96195UA. [Bacterial strain of Bacillus thuringiensis var. israelensis – producer of the extracellular collagenase]. Publ. 26.01.2015, Byul. N2. Ukrainian.
  11. Koltukova NV, Vaskivniuk VT. [Selection of methods for the isolation of the proteolytic complex from Bacillus mesentericus 316m at deep cultivation]. Microbiol. Z. 1980; 42(2):245-248. Ukrainian.
  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-275.
  13. Mandl I. Collagenase. Science. 1970; 169(3951):1234-1238.https://doi.org/10.1126/science.169.3951.1234
  14. Trombridg GO, Moon HD. Purifcation of human elastase. Proc Soc Exp Biol Med. 1972; 141(3):928-931. https://doi.org/10.3181/00379727-141-36903
  15. Masada M. Determination of the thrombolytic activity of Natto extract. Food style. 2004; 8(1):92-95.
  16. Westphal O, Jann K. Bacterial lipopolysaccharide – extraction with phenol. Methods Carbohydr. Chem. 1965; 5:83-91.
  17. Lakin GF. [Biometry]. M.: Vysshaya Shkola. 1990. 352 s. Russian.
  18. Lapatch SN, Tchubenko AV, Babitch PH. [Statistical methods in biomedical research using "Excel"]. K.: Morion. 2001; 408 s. Ukrainian.
  19. Dentovskaya SV, Platonov ME, Bakhteeva IV, Anisimov AP. [Presence of the full lipopolysaccharide core structure is necessary for activation of plasminogen by Yersinia pestis]. Mikrobiol Problemy osobo opasnykh infektsyi. 2007; 93:49-51. Russian.
  20. Varbanets LD, Brovarskaya OS, Bulyhina TN, Garkavaya EG, Zhitkevich NV. Characterisation of Pantoea agglomerans lipopolysaccharide. Microbiology. 2014; 83(6):754-763.https://doi.org/10.1134/S0026261714060198