Mikrobiol. Z. 2017; 79(6):120-136. Russian.
doi: https://doi.org/10.15407/microbiolj79.06.120

Biosynthetic Activity of Bacilli, Stipulated Their Probiotic Effect

Safronova L.A., Iliash V.M.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Characteristic of aerobic sporeforming bacteria of the Bacillus genus as producers of a wide spectrum of biologically active substances, has been presented, which is of interest for biotechnology. It have been considered principles of strains selection which are perspective for probiotics creation. The data analysis on biosynthetic bacilli activity, conditioned their probiotic efect, has been done.

Key words: Bacillus, probiotics, antimicrobial activity, biologically active substances, antibiotics, enzymes.

Full text (PDF, in Russian)

  1. Diomandé S, Nguyen-The C, Guinebretière M, Broussolle V, Brillard J. Role of fatty acids in Bacillus environmental adaptation. J. Front. Microbiol. 2015.
  2. Connor N, Sikorski J, Rooney AP, Kopac S, Koeppel AF, Burger A, et al. Ecology of speciation in the genus Bacillus. Appl. Environ. Microbiol. 2010;76:1349-58. https://doi.org/10.1128/AEM.01988-09
  3. Goto K, Omura T, Hara Y, Sadaie Y. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J. Gen. Appl. Microbiol. 2000;46(1):1–8. https://doi.org/10.2323/jgam.46.1
  4. Cutting SM. Bacillus probiotics. Food Microbiol. 2011;28(2):214-20. https://doi.org/10.1016/j.fm.2010.03.007
  5. Sorokulova I. Modern Status and Perspectives of Bacillus Bacteria as Probiotics. J Prob Health. 2013;1:e106. https://doi.org/10.4172/2329-8901.1000e106
  6. Smirnov VV, Reznik SR, Vyunitskaya VA. Sovremennyie predstavleniya o mehanizmah lechebno-profilakticheskogo deystviya probiotikov iz bakteriy roda Bacillus. Mikrobiol. Z. 1993;55(4):92–112. Russian.
  7. Probiotics and prebiotics – World Gastroenterology Organisation Practice Guideline, 2008.
  8. Sorokulova I. Preclinical Testing in the Development of Probiotics: Regulatory Perspective with Bacillus Strains as an Example. Clin. Infect. Diseases. 2008;46:92-5. https://doi.org/10.1086/523334
  9. Safronova LA. Probiotychni vlastyvosti bakteriy rodu Bacillus i vzayemodiya preparativ na yikh osnovi z makroorhanizmom : Avtoref. ...dok. byol. nauk. Kyiv, 2015. Ukrainian.
  10. Guidlines for the Evalution of Probiotics in Food. Report of a Joint FAO. WHO Working Group on Drafting Guidlines for the Evalution of Probiotics in Food. London, Ontario, Canada, April 30 and May 1, 2002.
  11. Berdy J. Bioactive Microbial Metabolites. The Journal of Antibiotics. 2005;58:1–26. https://doi.org/10.1038/ja.2005.1
  12. Awais M, Pervez A, Qayyum S, Saleem M. Effects of glucose, incubation period and pH on the production of peptide antibiotics by Bacillus pumilus. Afr. J. Microbiol. Res. 2008;2:114–9.
  13. Sang Y, Blecha F. Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim. Health Res. Rev. 2008;9(2):227-35. https://doi.org/10.1017/S1466252308001497
  14. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 2005;56(4):845-57. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  15. Tarabukina NP. Morfologicheskie, kulturalnyie i biologicheskie svoystva Bacillus subtlis TNP-3. Nauchnoe obespechenie veterinarnyih problem v zhivotnovodstve: Sb. nauch. tr. RASHN. Sib. otd-nie. IEVSiDV.Novosibirsk. 2000. Russian.
  16. Korenblum E, von der Weid J, Rosado AS, Sebastian GV, Continto CM, et al. Development of antimicrobial substances by bacteria Bacillus subtilis LFE-1, B. firmus H2O-1 and B. licheniformis T6-5 isolated from reservoirs for oil in Brazil. J. Appl. Microbiol. 2005;98(3):663-75. https://doi.org/10.1111/j.1365-2672.2004.02518.x
  17. Pabel CT, Hotemeister J, Wilde C, Franke P, Adler B, Bringmann G. Antimicrobial activities and matrix – assisted laser desorbtion/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar. Biotechnol. 2003;5(5):424-34. https://doi.org/10.1007/s10126-002-0088-8
  18. Cladera-Olivera F, Caron GR, Brandelli A. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 2004;38(4):251-6. https://doi.org/10.1111/j.1472-765X.2004.01478.x
  19. Zvenigorodskiy VI, Kuzin AI, Shagov EM, Azizbekyan RR, Zenova GM. Mikrobyi – antagonistyi (streptomitsetyi i batsillyi), vyidelennyie iz pochv raznyih tipov. Pochvovedenie. 2004;7:860-6. Russian.
  20. Barbosa TM, Serra CR, La Ragione RM. Screening for bacillus isolated in the broiler gastrointestinal tract. Appl. Environ. Microbiol. 2005;71(2):968–78. https://doi.org/10.1128/AEM.71.2.968-978.2005
  21. Vaseeharan B, Ramasamy P. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett. Appl. Microbiol. 2003;36(2):83-7. https://doi.org/10.1046/j.1472-765X.2003.01255.x
  22. Touraki M. Evaluation of the probiotics Bacillus subtilis and Lactobacillus plantarum bioencapsulated bin Artemia nauplii against vibriosis in European sea bass larvae (Dicentrarchus labrax). World J. Microbiol. Biotechnol. 2012;28(6):2425-33. https://doi.org/10.1007/s11274-012-1052-z
  23. Kim P. Purification and characterization of lipopeptide formed by Bacillus thuringiensis SMV26. J. Appl. Microbiol. 2004;97(5):942-50. https://doi.org/10.1111/j.1365-2672.2004.02356.x
  24. De La Fuente-Salcido NM, Casados-Vazquez LE, Barboza-Corona JE. Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide. Can. J. Microbiol.2013;59:515–22. https://doi.org/10.1139/cjm-2013-0284
  25. Yudina TG, Konuchova AV, Revina LP, Shestakov AI, Voyushina NE, Chestukhina GG, et al. Antibacterial activity of proteins Cyt and Cry Bacillus thuringiensis ssp. israelonsis. Can. J. Microbiol. 2009;49(1):37-44. https://doi.org/10.1139/w03-007
  26. Baruzzi F, Quintieri L Morea M, Caputo L. Antimicrobial compounds produced by Bacillus spp. and applications in food. In: Mendez-Vilas A, editor. Science against Microbial Pathogens: Communicating Current Research and Technological Advances. Badajoz: Formatex Research Center; 2011. P. 1102-11.
  27. Joshi RD, Hamde VS, Umrikar AM, et al. Studies on production of peptide antibiotic by thermotolerant Bacillus sp. Int. Multidisciplinary Res. J. 2012;2(6):30-3.
  28. Ming LJ, Epperson JD Metalbinding and structure–activity relationship of the metalloantibiotic peptide bacitracin. J. Inorg. Biochem. 2002;91(1):46-58. https://doi.org/10.1016/S0162-0134(02)00464-6
  29. Baindara P, Mandal SM, Chawla N, Singh PK, Pinnaka AK, Korpole S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express. 2013;3(2). https://doi.org/10.1186/2191-0855-3-2
  30. Mannanov RN, Sattarova RK. Antibiotics Produced by Bacillus Bacteria. Chem. Nat. Compounds. 2001;37(2):117-23. https://doi.org/10.1023/A:1012314516354
  31. Fickers P. Antibiotic compounds from Bacillus: why are they so amazing? Amer. J. Biochem. and Biotechnol. 2012;8(1):40-6. https://doi.org/10.3844/ajbbsp.2012.38.43
  32. Youra Kang, Sumin Park, Hyun Young Kim et al. Inhibitory effects of Macrolactin A and 7-O-succinyl macrolactin A on angiogenesis and cancer cell invasion. FASEB J. 2012; 26:48.8.
  33. Kim JB, Jung WH, Ryu JM, Lee YJ, Jung JK, Jang HW, Kim SW. Identification of a fibrinolytic enzyme by Bacillus vallismortis and its potential as a bacteriolytic enzyme against Streptococcus mutans. Biotechnol Lett. 2007;29(4):605–10. https://doi.org/10.1007/s10529-006-9284-3
  34. Moldenhauer J, Götz DC, Albert CR, Bischof SK, Schneider K, Süssmuth RD, et al. The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42: direct evidence for beta, gamma dehydration by a trans–acyltransferase polyketidesynthase. Angew. Chem. Int. Ed. Engl. 2010;49(8):1465-7. https://doi.org/10.1002/anie.200905468
  35. Chen H, Wang I, Su CX, Gong GH, Wang P, Yu ZI. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett.  Appl. Microbiol. 2008;47(3):180-6. https://doi.org/10.1111/j.1472-765X.2008.02412.x
  36. Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004;50(1):1-17. https://doi.org/10.1139/w03-076
  37. Temirov YuV. Biologicheski aktivnyie vtorichnyie metabolityi – peptidyi, obrazuemyie termofilnyimi shtammami batsill. Avtoref. ... kand. biol. nauk. Puschino, 2004. Russian.
  38. Kwa AL, Vincent HT, Matthew EF. Polymyxins: A Review of the Current Status Including Recent Developments. Ann. Acad. Med. Singapore. 2008;37:870-83.
  39. Bushra J, Farina H, Hameedand A, Safia A. Isolation of Bacillus subtilis MH-4 from soil and its potential of polypeptide antibiotic production. Pak. J. Sci. 2007;20:26–31.
  40. Romano A, Vitullo D, Senatore M, Lima G, Lanzotti V. Antifungal cyclic lipopeptides from Bacillus amyloliquefaciens strain BO5A. J. Nat. Prod. 2013;76:2019-25. https://doi.org/10.1021/np400119n
  41. Fox SL, Bala GA. Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour. Technol. 2000;75:235-40. https://doi.org/10.1016/S0960-8524(00)00059-6
  42. Melentev AI, Kurchenko VI, Leontev VN, Galimzyanova NF, Kuzmina LYu, Gilvanova EA, et al Vyidelenie i predvaritelnaya harakteristika antigribnyih soedineniy shtamma Bacillus subtilis IB-54 – antagonista pochvennyih mikromitsetov. Trudyi Belorus. gos. Un-ta. 2010;5(1):200-9. Russian.
  43. Oleinikova GK, Dmitrenok AS, Voinov VG, Chaikina EL, Shevchenko LS, Kuznetsova T A. Bacillomycin D from the Marine Isolate of Bacillus subtilis KMM 1922. Chemistry Natural Compounds. 2005;41(4):461-4. https://doi.org/10.1007/s10600-005-0177-9
  44. Pinchuk I, Bressollier P, Sorokulova І. In vitro anti–Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrobial agents and chemotherapy. 2001;45(11):3156-61. https://doi.org/10.1128/AAC.45.11.3156-3161.2001
  45. Yazgan KA, Cetin S, Ozcengiz G. The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis. Biochim. et biophys. acta. Gene structure and Express. 2003;1626(1-30):51-6.
  46. Nikitenko VI, Kopyilov VA, Nikitenko MV. Preparat «Sporobakterin», novyie dannyie o mehanizme deystviya etogo i drugih zhivyih bakterialnyih preparatov. Mezhdunar. nauchn.-prakt. konf. pamyati G.I. Goncharovoy «Probioticheskie mikroorganizmyi – sovremennoe sostoyanie voprosa i perspektivyi ispolzovaniya» (Moskva, 28-30 maya 2002): Materialyi konf.– Moskva 2002;51-2. Russian.
  47. Varbanets LD, Matselyuh EV. Peptidazyi mikroorganizmov i metodyi ih issledovaniya. – Kiev: Naukova. dumka, 2014. Ukraine.
  48. Siriporn Y, Alissara R, Masaaki Y. Purification and Characterization of Alkaline Protease from Bacillus megaterium Isolated from Thai Fish Sauce Fermentation Process. Sci. Asia. 2006;32:377-83. https://doi.org/10.2306/scienceasia1513-1874.2006.32.377
  49. Matselyukh OV, Nidyalkova NA, Varbanets’ LD. Osoblyvosti rostu i biosyntezu elastazy mutantnym variantom Bacillus sp. 27-88ELS. Biotekhnolohiya. 2011;4(3):4350. Ukrainian.
  50. Bekarev AA, Artamonov AV, Vereshchahyn EY. Immobilizirovannyiy produtsiruemyiy bakteriyami Bacillus licheniformis subtilizin, obladayuschiy tromboliticheskim i antikoagulyantnyim svoystvami. Pat. RU 2416643 C2. 1999 May 20. Russian.
  51. Yangirova ZZ. Razrabotka i izuchenie immunobiologicheskih svoystv novogo lekarstvennogo sredstva – baktisporinplasta: Avtoref. … .kand. biol. nauk. Ufa, 2005. Russian.
  52. Danilova YuV, Cheremin AM, Zamaleeva AI, Mardanova AM, Zamalyutdinova NM. Tromboliticheskaya i fibrinoliticheskaya aktivnost bakterialnyih proteaz. Klet. transplantologiya i tkan. inzheneriya. 2012;3:49-51. Russian.
  53. Kirillova YuM, Danilova YuV, Sharipova MR. Deystvie bakterialnyih serinovyih proteinaz na perevivaemyie kulturyi kletok zhivotnyih. Klet. transplantologiya i tkan. inzheneriya. 2012;3:88-91. Russian.
  54. Bhaskar N, Sudeepa ES, Rashmi HN, Tamil Selvi A. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresource Technol. 2007;98(14):2758-64. https://doi.org/10.1016/j.biortech.2006.09.033
  55. Lee HS, Lee H. Purification and biochemical characterization of bacteriolytic enzyme from Bacillus subtilis YU–1432 active against Porphyromonas gingivalis. Journal of the Korean Society for Applied Biological Chemistry. 2011;54(4);600-5.
  56. Ryazanova LP, Ledova LA, Tsurikova NV, Stepnaya OA, Sinitsyin AP, Kulaev IS. Vozdeystvie proteoliticheskih fermentov Bacillus licheniformis i lizomidazyi Lysobacter sp. XL1 na kletki Proteus vulgaris i Proteus mirabilis. Prikl. biohimiya i mikrobiologiya. 2005;41(5):558-64. Russian.
  57. Hosoi T, Ametani A, Kiuchi K, Kaminogawa S. Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Can J Microbiol. 2000;46(10):892-7. https://doi.org/10.1139/w00-070
  58. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R. Advances in microbial amylases. Biotechnol. Appl. Biochem. 2000;31:135-52. https://doi.org/10.1042/BA19990073
  59. Li-Jung Y, Hsin-Hung L, Zheng-Rong X. Purification and characterization of a cellulase from Bacillus subtilis YJ1. J. Mar. Sci. and Technol. 2010;18(3):466-71.
  60. Nurullah A. High Level Production of Extracellular Protease from Bacillus licheniformis ATTC 12759 in Submerged Fermentation. Res. J. Biotechnol. 2012;7(3):46-55.
  61. Shaheen M, Aamer AS, Abdul H, Farina H. Influence of culture conditions on production and activity of protease from Bacillus subtilis BS1. Pak. J. Bot. 2008;40(5):2161-9.
  62. Sanchez M, Prim N, Randez-Gil F, Pastor FIJ, Diaz P. Engineering of baker’s yeast, E. coli and Bacillus hosts for the production of Bacillus subtilis lipase A. Biotechnol. and Bioeng. 2002;78:339-45. https://doi.org/10.1002/bit.10201
  63. Harwood CR, Wipat A, Pragai Z. Functional analysis of the B. subtilis genome. Methods Microbiol. 2002;33:336-67. https://doi.org/10.1016/S0580-9517(02)33019-8
  64. Sutherland IW. Bacterial exopolysaccharides: strong and sticky framework. Microbiology. 2001;147:3-9. https://doi.org/10.1099/00221287-147-1-3
  65. Nicolaus B, Schiano Moriello V, Lama L, Poli A, Gambacorta A. Polysaccharides from extremophilic microorganisms. Оrig. Life and Evol. Bios. 2004;34(1–2):159-69. https://doi.org/10.1023/B:ORIG.0000009837.37412.d3
  66. Buharova EN. Ekzopolisaharid Paenibacillus polymyxa 88A: poluchenie, harakteristika i perspektivyi ispolzovaniya v hlebopekarnoy promyishlennosti : Avtoref. dis. … kand. biol. nauk. Saratov, 2004. Russian.
  67. Pestova OV. Biosintez ekzopolisaharidov bakteriyami Bacillus mucilaginosus v glubinnyih usloviyah kultivirovaniya i novyiy aspekt ih ispolzovaniya : Avtoref. diss. ... kand. biol. nauk. S.-Peterburg. 2000; 21 s. Russian.
  68. Nyanikova GG, Vinogradov EYa, Pestova OV, Rasulov MM. Biologicheskie svoystva ekzopolisaharidov Bacillus mucilaginosus. Nauch.-tehn. konf. «Fundamentalnyie i prikladnyie problemyi biotehnologii i meditsinyi» (S.-Peterburg, 19–20 apr. 2000).: Tez. dokl. S.-Peterburg 2000:45-6. Russian.
  69. Enikeev RR. Opisanie, biosintez i biologicheskoe deystvie polisaharida kefirnyih gribkov – kefirana. Biofarm. zhurn. 2011;3(3):11-8. Russian.
  70. Van Dyk JS, Nalise Low Ah Kee L, Carminita L Frost, Brett I Pletschke. Extracellular Polysaccharide production in Bacillus licheniformis SVD1 and its immunomodulatory effect. BioResources. 2012;7(4):4976-93. https://doi.org/10.15376/biores.7.4.4976-4993
  71. Ramanathan T, Ahmad A, Shamsuddin A, Kalimutho A, Kalimutho M. Taxonomical identity and polysaccharide produced by Bacillus species isolated from old aged medicinal decoctions. J. Sustainability Sci. and Manag. 2011;6(1):2-9.
  72. Honggui W, Jianfeng Y, Xianyang S, Qiyang W, Nan S. Structure and bio–properties of extracellular polysaccharide from Bacillus sp. strain LBP32 isolated from Luobopo desert. J. Biotechnol. and Bioprocess Eng. 2011;16(4):761-8. https://doi.org/10.1007/s12257-010-0456-6
  73. Smirnov VV, Reznik SR, Vasilevskaya. IA. Sporoobrazuyushchie aerobnye bakterii - producentyi biolohicheski aktivnyikh veshchestv. Kyiv.: Naukova. dumka, 1982. Ukraine.
  74. Tserkovnyak LS, Roy AO, Kurdysh IK Syntez aminokyslot Bacillus subtiis IMV V-7023 v seredovyshchi z hlitserofosfatom. Mikrobiol. zhurn. 2009;71(5):18-23. Ukrainian.
  75. Nuttawut K, Chaniga C, Chiravoot P, Sarote S. Production of Poly–γ–glutamic acid by Bacillus licheniformis: Synthesis and Characterization. J. Metals, Materials and Minerals. 2012;22(2):7–11.
  76. Tanasienko OA, Rudyk MP, Pozur VV, Potebnya GP. Influence of bacterial lectins on some reactions of nonspecificimmunity in sarcoma 37 transplanteted mice. Exp. Oncol. 2010;32(4):254-57.
  77. Pidhors’kyy VS, Kovalenko EO, Karpova IS, Sashchuk OV, Het’man KI. Ctrukturna kharakterystyka pozaklitynnoho lektynu – saprofitnoyi kul’tury Bacillus subtilis IMVV-7014. Dop. NAN Ukrayiny. 2010;9:143-9. Ukrainian.
  78. Salvetti S, Celandroni F, Ghelardi E, Baggiani A, Senesi S. Rapid determination of vitamin B2 secretion by bacteria growing on solid media. J. Appl. Microbiol. 2003;95:1255-60. https://doi.org/10.1046/j.1365-2672.2003.02095.x