Mikrobiol. Z. 2017; 79(5):105-119. Ukrainian.
doi: https://doi.org/10.15407/microbiolj79.05.105

Biological Activity and Biosynthesis of Poly-γ-Glutamic Acid by Bacteria of Bacillus Genus

Kharkhota M.A.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

This review focuses on the studies of biosynthesis and application of poly-γ-glutamic acid in industries. It was characterized the structure and physiological role of poly-γ-glutamic acid for producers. It was summarized the behaviour of biosynthesis of the biopolymer of studied Bacillus strains at their submerged cultivation. It was shown the infuence of components of nutrient medium and physic-chemical conditions of cultivation on yield of poly-γ-glutamic acid and its molecular weight. It was summarized information on the possibility of applying poly-γ-glutamic acid in food and cosmetic industries, for sewage treatment, creating nanobiocomposite materials, including medical devices, vaccines and conjugated chemotherapeutic agents for the treatment of cancer.

Key words: bacteria of the Bacillus genus, poly-γ-glutamic acid, drug development.

Full text (PDF, in Ukrainian)

  1. Ivanovics G., Bruckner V. et all. Chemical and immuno-logical studies on the mechanism of infection and immunity in anthrax. The chemical structure of the capsular substance of B. anthracis and of the serologieally identical substance in B. mesentericus. Z Immun exp ther. 1937; 90: 304–18.
  2. Ashiuchi, M., Misono H. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl Microbiol Biotechnol. 2002; 1: 9–14.
  3. Hezayen, F. F., Rehm B.H, Tindall B.J. Transfer of Natrialba asiatica b1t to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the archaea from egypt that produces extracellular poly (glutamic acid). Int J Syst Evol Microbiol. 2001; 3: 1133–1142. https://doi.org/10.1099/00207713-51-3-1133
  4. Rikizo Aono. Characterization of cell wall components of the alkalophilic Bacillus strain C-125: identifcation of a polymer composed of polyglutamate and polyglucuronate. Microbiology. 1989; 135: 265—271. https://doi.org/10.1099/00221287-135-2-265
  5. Oppermann-Sanio F.B., Steinbuchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften. 2002; 89: 11—22. https://doi.org/10.1007/s00114-001-0280-0
  6. Kunioka, M. Biosynthesis and chemical reactions of poly (amino acid) s from microorganisms. Appl Microbiol Biotechnol. 1997; 5: 469–475. https://doi.org/10.1007/s002530050958
  7. Candela T., Fouet A. Poly-gamma-glutamate in bacteria. Molecular microbiology. 2006; 5: 1091–1098. https://doi.org/10.1111/j.1365-2958.2006.05179.x
  8. Zanuy D., Alem´an C., Munoz-Guerra S. On the helical conformation of unionized poly (γ-D-glutamic acid). Int J Biol Macromol. 1998; 23: 175—184. https://doi.org/10.1016/S0141-8130(98)00047-6
  9. Najar I., Das S. Poly-glutamic acid(pga)-structure, synthesis, genomic organization and its application: a review. Int J Pharm Sci Res. 2015; 6: 2258.
  10. Wei Zhang, Yulian He, Weixia Gao et al. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens ll3. J Ind microbiology & biotechnology. 2015; 2: 297–305. https://doi.org/10.1007/s10295-014-1563-8
  11. Candela T., Mock M., Fouet A. Cape, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J. Bacteriol. 2005; 22: 7765–7772. https://doi.org/10.1128/JB.187.22.7765-7772.2005
  12. Mitsunaga H., Meissner L., Palmen T. et al. Metabolome analysis reveals the effect of carbon catabolite control on the poly (γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. J Biosci Bioeng. 2016; 121(4): 413–419. https://doi.org/10.1016/j.jbiosc.2015.08.012
  13. Wilming A., Begemann J., Kuhne S. et al. Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations. Biochemical engineering j. 2013; 73: 29–37. https://doi.org/10.1016/j.bej.2013.01.008
  14. Qun Wu, Hong Xu, Lin Xu, Pingkai Ouyang. Biosynthesis of poly (γ-glutamic acid) in Bacillus subtilis NX-2: regulation of stereochemical composition of poly (γ-glutamic acid). Process Biochem. 2006; 7: 1650–1655. https://doi.org/10.1016/j.procbio.2006.03.034
  15. Yonghong Meng, Guiru Dong, Chen Zhang et al.  Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto. Biotechnology letters. 2015: 1–7.
  16. Baiqi Huang, Peiyong Qin, Zhiwen Xu et al. Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis ATCC 2108 producing poly-(γ-glutamic acid). Bioresource technology. 2011; 3: 3595–3598. https://doi.org/10.1016/j.biortech.2010.10.073
  17. Qun Wu, Hong Xu, Jinfeng Liang, Jun Yao. Contribution of glycerol on production of poly (γ-glutamic acid) in Bacillus subtilis NX-2. Appl Biochem Biotechnol. 2010; 2: 386–392. https://doi.org/10.1007/s12010-008-8320-2
  18. Bajaj I.B., Singhal R.S. Effect of aeration and agitation on synthesis of poly (γ-glutamic acid) in batch cultures of Bacillus licheniformis NCIM 2324. Biotechnol Bioprocess Engin. 2010; 4: 635–640. https://doi.org/10.1007/s12257-009-0059-2
  19. Dan Zhang, Xiaohai Feng, Sha Li et al. Effects of oxygen vectors on the synthesis and molecular weight of poly (γ-glutamic acid) and the metabolic characterization of Bacillus subtilis NX-2. Process Biochemistry. 2012; 12: 2103–2109. https://doi.org/10.1016/j.procbio.2012.07.029
  20. Shih, L., Yi-Tsong Van, Yi-Yuan Sau. Antifreeze activities of poly (γ-glutamic acid) produced by Bacillus licheniformis. Biotechnology letters. 2003; 20: 1709–1712. https://doi.org/10.1023/A:1026042302102
  21. Shyu, Y.-S., Hwang J.Y., Hsu C.-K. Improving the rheological and thermal properties of wheat dough by the addition of γ-polyglutamic acid. LWT-food science and technology. 2008; 6: 982–987. https://doi.org/10.1016/j.lwt.2007.06.015
  22. Mitsuiki M. et all. Relationship between the antifreeze activities and the chemical structures of oligo-and poly (glutamic acid) s. J Agric Food Chem. 1998; 3: 891—895. https://doi.org/10.1021/jf970797m
  23. Kubota, H., Nambu Y., Endo T. Convenient and quantitative esterifcation of poly (γ-glutamic acid) produced by microorganism. J Polymer Science Part A: Polymer Chemistry. 1993; 11: 2877–2878. https://doi.org/10.1002/pola.1993.080311127
  24. Kunioka M. Biodegradable water absorbent synthesized from bacterial poly (amino acid) s. Macromolecular bioscience. 2004; 3: 324–329. https://doi.org/10.1002/mabi.200300121
  25. Zongqi Xu, Peng Lei, Xiaohai Feng et al. Effect of poly (γ-glutamic acid) on microbial community and nitrogen pools of soil. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science. 2013; 8: 657–668.
  26. Bajaj I., Singhal R. Poly (glutamic acid)–an emerging biopolymer of commercial interest. Bioresour Technol. 2011; 10: 5551–5561.
  27. Jane-Yii Wu, Hsiu-Feng Ye. Characterization and flocculating properties of an extracellular biopolymer produced from a Bacillus subtilis DYU1 isolate. Process Biochemistry. 2007; 7: 1114–1123.
  28. Chunhachart O., Kotabin N., Yadee N. et al. Effect of lead and γ-polyglutamic acid produced from Bacillus subtilis on growth of Brassica chinensis. APCBEE Procedia. 2014; 10: 269–274. https://doi.org/10.1016/j.apcbee.2014.10.051
  29. Ching Ting Tsao, Chih Hao Chang, Yu Yung Lin et al. Evaluation of chitosan/γ-poly (glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr Polym. 2011; 2: 812–819. https://doi.org/10.1016/j.carbpol.2010.04.034
  30. Lalatsa A., Schatzlein A. G., Mazza M. et al. Amphiphilic poly (l-amino acids) − new materials for drug delivery. J Control Release. 2012; 2: 523–536. https://doi.org/10.1016/j.jconrel.2012.04.046
  31. Manocha, B., Margaritis A. Production and characterization of γ-polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol. 2008; 2: 83–99. https://doi.org/10.1080/07388550802107483
  32. Dutta, S., Ray S., Nagarajan K. Glutamic acid as anticancer agent: An overview. Saudi Pharmaceutical J. 2013; 4: 337–343. https://doi.org/10.1016/j.jsps.2012.12.007
  33. Xiaoguang Liu, Shishuai Su, Fengxiang Wei et al. Construction of nanoparticles based on amphiphilic copolymers of poly (γ-glutamic acid co-l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine as a potential drug delivery carrier. J Colloid Interface Sci. 2014; 413: 54–64. https://doi.org/10.1016/j.jcis.2013.09.022
  34. Haihua Xiao, Ruogu Qi, Shi Liu et al. Biodegradable polymer-cisplatin(iv) conjugate as a pro-drug of cisplatin(ii). Biomaterials. 2011; 30: 7732–7739. https://doi.org/10.1016/j.biomaterials.2011.06.072
  35. Huanli Sun, Ru Cheng, Chao Deng et al. Enzymatically and reductively degradable α-amino acid-based poly (ester amide) s: synthesis, cell compatibility, and intracellular anticancer drug delivery. Biomacromolecules. 2015; 2: 597–605. https://doi.org/10.1021/bm501652d
  36. Yasunori Morimoto, Kenji Sugibayashi, Satoshi Sugihara et al. Antitumor agent poly (amino acid) conjugates as a drug carrier in cancer chemotherapy. J Pharmacobiodyn. 1984; 9: 688–698. https://doi.org/10.1248/bpb1978.7.688
  37. CF Roos, Matsumoto Satoshi, Takakura Yoshinobu et al. Physicochemical and antitumor characteristics of some polyamino acid prodrugs of mitomycin c. Int J Pharm. 1984; 1: 75–87. https://doi.org/10.1016/0378-5173(84)90047-4
  38. Richard A., Margaritis A. Poly (glutamic acid) for biomedical applications. Critical reviews in biotechnology. 2001; 4: 219–232. https://doi.org/10.1080/07388550108984171
  39. Choi J. C., Lee C. H. In vivo hair growth promotion effects of ultra-high molecular weight poly-γ-glutamic acid from Bacillus subtilis (chungkookjang).  J Microbiol Biotechnol. 2015; 3: 407–412. https://doi.org/10.4014/jmb.1411.11076
  40. Kambourova M., Tangney M., Priest F.G. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl Environ Microbiol. 2001; 2: 1004–1007. https://doi.org/10.1128/AEM.67.2.1004-1007.2001
  41. Hoes C., Potman W., Heeswijk V. Optimization of macromolecular prodrugs of the antitumor antibiotic Adriamycin. Journal of Controlled Release. 1985; 2: 205–213. https://doi.org/10.1016/0168-3659(85)90046-X
  42. Hoes C., Grootoonk J., Duncan R. Biological properties of adriamycin bound to biodegradable polymeric carriers. Journal of controlled release. 1993; 1: 37–53. https://doi.org/10.1016/0168-3659(93)90069-H
  43. Zunino F., Pratesi G., Micheloni A. Poly (carboxylic acid) polymers as carriers for anthracyclines. Journal of controlled release. 1989; 1: 65–73. https://doi.org/10.1016/0168-3659(89)90018-7
  44. Hurwitz E., Wilchek M., Pitha J. Soluble macromolecules as carriers for daunorubicin. J Appl Biochem. 1980; 2: 25–35.
  45. Yoshinori Kato, Masahiko Saito, Hisashi Fukushima et al. Antitumor activity of 1-β-d-arabinofuranosylcytosine conjugated with polyglutamic acid and its derivative. Cancer research. 1984; 1: 25–30.