Mikrobiol. Z. 2017; 79(4):53-65. Russian.
doi: https://doi.org/10.15407/microbiolj79.04.053

Identification of Consanguinity of the Strain Streptomyces globisporus 1912-2

Polishchuk L.V., Lukyanchuk V.V.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

The purpose of this reseach was to clarify close relation of the strain S. globisporus 1912-2 and to defne the lowest level taxonomic group (clade), to which this strain belonged. Methods. In silico comparative tests of primary structures of genomes of the strain S. globisporus 1912-2 and number of strains of Streptomyces spp. on the database “Genome” of the server of the National Center for Biotechnology Information were conducted using the software package of the Basic Local Alignment Search Tool of the above mentioned server. Results. The closely relationship of the strain S. globisporus 1912-2 with strains of the S. griseus clade was defned. The greatest affnity with a strain of S. globisporus C–1027 were equally the results of in silico analysis of the primary structures of Streptomycetes genomes from the database “Genome” and the said strain or comparative tests in silico of the sequences only of their 16S rRNA genes. While the analysis in silico of nucleotide sequences of 6 genes of Streptomyces strains showed the greatest affnity of the strain S. globisporus 1912-2 with the strain S. griseus NBRC13350. Conclusions. It was approved that the strain of S. globisporus 1912-2 was a member of the S. griseus clade.

Key words: a clade, in silico analysis, S. globisporus 1912-2, a primary structure of DNA, a gene.

Full text (PDF, in Russian)

  1. Blokhina I.N., Levanova G.F. [Genosystematics of Bacteria]. – Moscow: Nauka. 1976. Russian.
  2. Efremenkova O.V., Gruzina V.D., Sumarukova I.G., Kuznetsov V.D. [Search for A factor–dependent variants in actinomycete population] Mikrobiologiia. 2003; 72(6): 766–769. Russian.
  3. Goodfellow M., Kumar Y., Labeda D.P., Sembiring L. The Streptomyces violaceusniger clade: a home for Streptomycetes with rugose ornamented spores. Antonie Van Leeuwenhoek. 2007; 92(2): 173–199. https://doi.org/10.1007/s10482-007-9146-6
  4. Hackl S., Bechthold A. The gene bldA, a regulator of morphological differentiation and antibiotic production in Streptomyces. Arch. Pharm. Chem. Life Sci. 2015; 348(7): 1–8. https://doi.org/10.1002/ardp.201500073
  5. Inge–Vechtomov S.G. [Genetics with the basics of breeding]. Moscow: High school. 1989.
  6. Kampfer P. The Family Streptomycetaceae. Part I: Taxonomy. P. 538–604. The Prokaryotes. V. 3 (ed: Dworkin M., Falkow S., Rosenberg E., Schleifer K–H.). Springer-Verlag (New York). 2006. Russian.
  7. Kato J.Y., Funa N., Watanabe H., et al. Biosynthesis of gamma–butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc. Natl. Acad. Sci U S A. 2007; 104(7): 2378–2383. https://doi.org/10.1073/pnas.0607472104
  8. Labeda D.P., Goodfellow M., Brown R. Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek. 2012; 101(1): 73–104. https://doi.org/10.1007/s10482-011-9656-0
  9. Lanoot B., Vancanneyt M., Hoste B., et al. Grouping of Streptomycetes using 16S–ITS RFLP fngerprinting. Res. Microbiol. 2005; 156(5–6): 755–762. https://doi.org/10.1016/j.resmic.2005.01.017
  10. Lee H.S., Ohnishi Y., Horinouchi S. A sigma Beta–like factor responsible for carotenoid biosynthesis in Streptomyces griseus. J Mol Microbiol Biotechnol. 2001; 3(1): 95–101.
  11. Li X., Lei X., Zhang C., et al. Complete genome sequence of Streptomyces globisporus C–1027, the producer of an enediyne antibiotic lidamycin. J. Biotechnol. 2016; 222: 9–10. https://doi.org/10.1016/j.jbiotec.2016.02.004
  12. Makarasen A., Yoza K., Isobe M. Higher structure of cereulide, an emetic toxin from Bacillus cereus, and special comparison with valinomycin, an antibiotic from Streptomyces fulvissimus. Chem Asian J. 2009; 4(5): 688–698. https://doi.org/10.1002/asia.200900011
  13. Mao X.M., Luo S., Zhou R.C., et al. Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J. Biol Chem. 2015; 290(12): 7992–8001. https://doi.org/10.1074/jbc.M114.608273
  14. Matselyukh B., Lavrinchuk V.Ya. [Generation and characteristics of Streptomyces globisporus 1912 mutants, defective in biosynthesis of landomycin E]. Microbiol Zhurn. 1999; 61(4): 22–27. Ukrainian.
  15. Matselyukh B., Mohammadipanah F., Laatsch H., et al. N–methylphenylalanyl–dehydrobutyrine diketopiperazine, an A–factor mimic that restores antibiotic biosynthesis and morphogenesis in Streptomyces globisporus 1912–B2 and Streptomyces griseus 1439. J. Antibiot. (Tokyo). 2015; 68(1): 9–14. https://doi.org/10.1038/ja.2014.86
  16. Matselyukh B.P., Polishchuk L.V., Lukyanchuk V. V. et al. Molecular mechanism of the carotenoid biosynthesis activation in the producer Streptomyces globisporus 1912. Biotechnologia Acta. 2014; 7(6): 69–74. https://doi.org/10.15407/biotech7.06.069
  17. Myronovskyi M., Tokovenko B., Manderscheid N., et al. Complete genome sequence of Streptomyces fulvissimus. J Biotechnol. 2013; 168(1): 117–118. https://doi.org/10.1016/j.jbiotec.2013.08.013
  18. Polishchuk L.V. [Chromosomal fragmern from Streptomyves globisporus 1912–2 homologous to afsA–gene of S. griseus NBRC 13350.] The Bulletin of Vavilov Society of Geneticists and Breeders of Ukraine. 2015; 13(1): 68–72. Ukrainian.
  19. Polishchuk L.V. [In silico seaching of Streptomyces globisporus 1912–2 gvp–claster] Factors of experimental evolution of organisms. 2015; 17: 325–329. Ukrainian.
  20. Polishchuk L. Nucleotide sequences of tRNA–metionine genes of Streptomyces globisporus 1912, identifed in silico. The Bulletin of Vavilov Society of Geneticists and Breeders of Ukraine. 2016; 14: 58–62.
  21. Polishchuk L.V., Matselyukh B.P. [rRNA–genes of actinomycetes, which are gomologous to Streptomyces globisporus 1912–2 rRNA–claster]. Factors of experimental evolution of organisms. 2015; 14: 129–133. Ukrainian.
  22. Rebets Y. V., Ostash B. O., Fukuhara M., et al. Expression of the regulatory protein LndI for landomycin E production in Streptomyces globisporus 1912 is controlled by the availability of tRNA for the rare UUA codon. FEMS Microbiology Letters. 2006; 256(1): 30–37. https://doi.org/10.1111/j.1574-6968.2005.00087.x
  23. Rong X.,  Huang Y. Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Intern. J. Systematic and Evolutionary Microbiology. 2010; 60(3): 696–703. https://doi.org/10.1099/ijs.0.012419-0
  24. Schmitt M. Willi Hennig and the Rise of Cladistics. Annual Review of Ecology and Systematics. 1984; 15: 1–24.
  25. Shipunov A. B. [Basics of the theory of systematics]. Moscow: University Press. 1999. Russian.
  26. Smith A. W.  Phylogenetics and homology modeling. New Brunswick: New Jersey. 2008.
  27. Stackebrandt E., Frederiksen W., Garrity G.M. et al. Report of the ad hoc committee for the re–evaluation of the species defnition in bacteriology. Intern. J. Systematic and Evolutionary Microbiology. 2002; 52(3): 1043–1047.
  28. Takano H., Asker D., Beppu T., Ueda K. Genetic control for light–induced carotenoid production in non–phototrophic bacteria. J. Ind. Microbiol. Biotechnol. 2006; 33(2): 88–93. https://doi.org/10.1099/ijs.0.012419-0
  29. Tourova T.P., Kuznetsov B.B., Novikova E.V., et al. [Heterogeneity of nucleotide sequences of 16S ribosomal RNA genes from the Desulfotomaculum kuznetsovii type strain]. Mikrobiologiia. 2001; 70(6): 788–795. Russian.
  30. Vandamme P., Pot B., Gillis M. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiology Reviews. 1996; 60(2): 407–438.