Mikrobiol. Z. 2017; 79(4):40-52. Russian.
doi: https://doi.org/10.15407/microbiolj79.04.040

Chemical Characterization and Serological Activity of Ralstonia solanacearum Flagellin Preparatuons

Brovarskaya O.S., Voychuk S.I., Varbanets L.D.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

From the eight strains of Ralstonia solanacearum, isolated from different collections, obtained preparations of fagellin. Their chemical identifcation showed the presence of protein (55 - 92 %), carbohydrates (7 - 25 %) and small amounts of nucleic acids (from 0.5 to 3.3 %) depending on the tested strain. Amino acid composition was presented by 17 amino acids the predominant of which were dicarbonic (glutamic and aspartic) acids, as well as alanine, leucine and lysine. Acidic amino acids account up to 20 % of all amino acids of fagellin. Proline, tyrosine, phenylalanine, histidine, arginine present in minor amounts (1 - 6 %). Tryptophan was not detected at all, methionine and cysteine is practically lacking in all fagellin preparations. In fagellins of two R. solanacearum strains 5712 and 8089 were identifed following monosaccharides: rhamnose (20.1 and 79.9 % respectively) and glucose (73.9 and 14.6 % respectively). In the preparation of R. solanacearum 5712 fagellin also found xylose (6.0 %). In fagellins of others strains we could not identify these monosaccharides, which is probably due to the presence in their composition of unique sugars that did not appear in the standard, which has been used by us for analysis. Polyacrylamide gel electrophoresis shows that investigated preparations of R. solanacearum fagellin are heterogeneous and represented by several bands of different molecular weights of 14 400 to 94 000 Da. The results of the serological tests give a possibility to suggest the presence in the fagellins antigenic determinant of carbohydrate nature which are identical epitopes of LPS of some R. solanacearum strains. Studies have shown that similar LPS, fagellin of R. solanacearum can not be used as common antigen of this species.

Key words: Ralstonia solanacearum, fagellin preparations, chemical identifcation, serological activity.

Full text (PDF, in Russian)

  1. Albershein P., Nevis D.J., English P.D., Karr A. A method for analysis of sugars in plant cell wall polysaccharides by gas liquid chromatography. Carboh Res. 1976; 5(3): 340-345. https://doi.org/10.1016/S0008-6215(00)80510-8
  2. Belyakov A.Ye, Burygin G.L., Arbatsky N.P., Shashkov A.S., Selivanov N.Yu., Matora L.Yu., Knirel Yu.A., Shchyogolev S.Yu. Identifcation of an O-linked repetitive glycan chain of the polar fagellum fagellin of Azospirillum brasilense Sp7. Carbohydr Res. 2012; 361: 127-132. https://doi.org/10.1016/j.carres.2012.08.019
  3. Braga C.J., Massis M.L., Alencar B.C., Rodriges M.M., Sbrogio-Almeida M.E., Ferreria L.C. Cytotoxic T cell-adjuvant effects of three Salmonella enteric fagellins. Brazilian Journal of Microbiology. 2008; 39(1): 44-49. https://doi.org/10.1590/S1517-83822008000100011
  4. Burdelia L.G. An agonistic of Toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 2008; 320 (5873): 226-230. https://doi.org/10.1126/science.1154986
  5. Burdelia L.G. Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int. J Radiat Oncol Boil Phys. 2012; 83(1): 228-234. https://doi.org/10.1016/j.ijrobp.2011.05.055
  6. DePamphilis M.L., Adier J. Fine structure and isolation of the hook-basal body complex of fagella from Escherichia coli and Bacillus subtilis. J. Bacteriology. 1971; 105(1): 384-395.
  7. Duan Q., Zhou M., Zhu L., Zhu G. Flagella and bacterial pathogenicity. J. Basic Microbiol. 2013; 53(1): P. 1-8. https://doi.org/10.1002/jobm.201100335
  8. Dubois M., Gilles K., Hamilton J., Rebers P.A., Smith F. Colorimetric method for determinationn of sugars and related substranses. Anal Chem. 1956; 28 (2): 350-356. https://doi.org/10.1021/ac60111a017
  9. Gritsay R.V., Brovarskaya О.S., Zhytkevytch N.V., Varbanets L.D. [Serological characteristic of lipopolysaccharides of Ralstonia solanacearum.] Mikrobiol. Z. 2012; 74(5): 16-21. Ukrainian.
  10. Gritsay R.V., Brovarskaya О.S., Zhytkevytch N.V., Varbanets L.D. [Monosaccharide composition of Ralstonia solanacearum lipopolysaccharides]. Mikrobiol. Z. 2013; 75(1): 28-33. Ukrainian.
  11. Harshey R.M., Toguchi A. Spinning tails: homologies among bacterial fagellar. Trends Microbiol. 1996; 4(6): 226-231. https://doi.org/10.1016/0966-842X(96)10037-8
  12. Hayward A. C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol. 1991; 29: 65–87. https://doi.org/10.1146/annurev.py.29.090191.000433
  13. Kocharova N.A., Knirеl Yu.A., Varbanets L.D., Moscakenko N.V., Brovarskaya O.S., Muras V.A., Young J.M. Studies of O-specifc polysaccharide chains of Pseudomonas solanacearum lipopolysaccharides consisting of structurally different repeating units. Carbohydr Res. 1993; 250: 277-285. https://doi.org/10.1016/0008-6215(93)84006-R
  14. Laemmli U.K. Cleavage of proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227: 680-685. https://doi.org/10.1038/227680a0
  15. Lowry O., Rosenbrough N., Farr A., Randall R. Protein measurement with the Folin reagent. J Biol Chem. 1951; 193(1): 265-275.
  16. Oliveira B.H., Silva M.R., Braga C.J., Massis L.M., Ferreira L.C., Sbrogio-Almeida M.F., Takagi M. Production of native fagellin from Salmonella typhimurium in a bioreactor and purifcation by tangential ultrafltration. Brazilian Journal of chemical engineering. 2011; 28(4): 574-584. https://doi.org/10.1590/S0104-66322011000400003
  17. Orive A., Pissinis D., Diaz C., Minan A., Benitez G., Rubert A., Millone D., Rumbo M., Creus A., Salvarezza R., Schilardi P. Self-assembly of fagellin on Au(111) surfaces. Journal of colloid and interface science. 2014; 433: 86-93. https://doi.org/10.1016/j.jcis.2014.07.016
  18. Ouchterlony О. Diffusion in gel methods for immunological analysis. Prog Allergy. 1962; 6: 3-15. https://doi.org/10.1159/000391328
  19. Smith K.D. Toll-like receptor 5 recognized a conserved site of fagellin required for protofllament formation and bacterial motility. Nat Immunol. 2003; 4(12): 1247-1253. https://doi.org/10.1038/ni1011
  20. Spirin A.S. [The determination of nucleic acids]. Biochemistry (Moscow). 1958; 23(5):562-662. Russian.
  21. Тalajeva G.B. [Antigenic characteristics of bacteria Bacillus thuringiensis and their application in bacteria’s differentiation]. Sibirian med j. 2010; 8: 77-79. Russian.
  22. Tans-Kersten J., Huang H., Allen A. Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol. 2001; 183(12): 3597-3605. https://doi.org/10.1128/JB.183.12.3597-3605.2001
  23. Tsai C. M., Frash C.E. A sensitive silver stain for detecting lipopolysaccharides in polyacrilamide gels. Anal Biochem. 1982; 119: 115–119. https://doi.org/10.1016/0003-2697(82)90673-X
  24. Varbanets L.D., Zdorovenko G.M., Knirel Yu.A. [Methods of lipopolysaccharides investigation]. Kiev: Naukova dumka; 2006. 237 p. Russian.
  25. Vasse J., Frey P., Trigalet A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant-Microbe Interact. 1995; 8: 241–251. https://doi.org/10.1094/MPMI-8-0241
  26. Vidaver A. Synhetic and complex media for the rapid detection of fuorescence of phytopathogenic pseudomonas: effect of the carbon source. Appl Microbiol. 1967; 15(16): 1523-1524.
  27. Vinarskaya N.V., Varbanets L.D. [Chemical characterization and serological activity of Ralstonia solanacearum lipopolysaccharides]. Mikrobiol. Z. 2002; 64(1): 37-47. Russian.
  28. Wilson D.R., Beveridge T.J. Bacterial fagellar flaments and their component fegellins. Can. J Microbiol. 1993; 39: 451-472. https://doi.org/10.1139/m93-066