Mikrobiol. Z. 2017; 79(3):72-83. Ukrainian.
doi: https://doi.org/10.15407/microbiolj79.03.072

Composition Optimization of the Nutrient Medium by Plakett-Berman Design for Increasing the Enzyme Activity
of Cellulolytic Complex of Fennellia sp. 2806

Syrchin S.O., Pavlychenko А.К., Kharkevych O.S., Nakonechna L.T., Yurieva O.М., Kurchenko I.M.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. Optimization of the nutrient medium components of ascomycete Fennellia sp. 2806 to increase the synthesis of cellulolytic enzyme complex using Plackett-Burman factorial design; study of the possibility of using this method to increase the synthesis of components of cellulolytic multienzyme complex. Methods. Methods of statistical design and determination of exo-, endoglucanase and xylanase activities by determining the release of reducing sugars were used. Results. Composition optimization of the nutrient medium increased the enzyme activities of cellulolytic complex of Fennellia sp. 2806: endoglucanase – 1.2 times, exoglucanase – 2.2, xylanase – 2.4 compared to the initial medium. The signifcant factors that had the greatest impact on each of the investigated activities were determined: urea, of KH2PO4, wheat straw, KCl, CoCl2. Conclusions. Plackett-Burman design was successfully employed for the composition optimization of the nutrient medium to increase the synthesis of multienzyme cellulolytic complex of Fennellia sp. 2806.

Key words: endoglucanase, exoglucanase, xylanase, Fennellia sp, Plackett-Burman design.

Full text (PDF, in Ukrainian)

  1. Acharya PB, Acharya DK, Modi HA. Optimization for cellulose production by Aspergillus niger using saw dust as substrate. Afr J Biotechnol. 2008;7(22):4147-52.
  2. Bilay VI. [Basis of general mycology] – Kiev: High school, 1989.
  3. Borin GP, Sanchez CC, de Souza AP, de Santana ES, de Souza AT, Leme AFP, et al. Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PloS ONE. 2015;10(6):e0129275. https://doi.org/10.1371/journal.pone.0129275
  4. Dashtban M, Buchkowski R, Qin W. Effect of different carbon sources on cellulose production by Hypocrea jecorina (Trichoderma reesei) strains. Int J Biochem Mol Biol. 2011;2(3):274-86.
  5. Dejaegher B, Vander Heyden Y. Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J Pharm Biomed Anal. 2011;56(2):141-58. https://doi.org/10.1016/j.jpba.2011.04.023
  6. Draper NR. Plackett and Burman Designs. In: Kotz S, editor. Encyclopedia of Statistical Sciences. 2nd Ed. John Wiley & Sons; 2006. V.9. p. 6161-4. https://doi.org/10.1002/0471667196.ess1976.pub2
  7. El-Metwally MM. Statistical response to different fermentation parameters in rapid production of cellulose by Penicillium purpurgenium MA1 in solid state fermentation of rice hulls. Res J Microbiol. 2014;9(5):221-31. https://doi.org/10.3923/jm.2014.221.231
  8. Gahda AY, Berekaa MM. Improved production of endoglucanase enzyme by Aspergillus terreus; application of  Plackett-Burman design for optimization of process parameters. Biotechnology. 2009;8(2):212-9. https://doi.org/10.3923/biotech.2009.212.219
  9. Ghose TK. Measurement of Cellulase Activities. Pure & Appl Chem. 1987;59(2):257-68. https://doi.org/10.1351/pac198759020257
  10. Gusakov AV. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 2011;29(9):419-25. https://doi.org/10.1016/j.tibtech.2011.04.004
  11. Hemsworth GR, Henrissat B, Davies GJ, and Walton PH. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol. 2014;10:122-6. https://doi.org/10.1038/nchembio.1417
  12. Ho HL, Ak Sali S. Bioprocessing of agricultural residuals for the optimum production of extracellular xylanase by Aspergillus brasiliensis in solid state fermentation (SsF). J Biodivers Biopros Dev. 2014;1(2):1-15. https://doi.org/10.1371/journal.pone.0055185
  13. Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications. Enzyme Research. 2011;2011:1-10. https://doi.org/10.4061/2011/280696
  14. Linger JG, Taylor LE, Baker JО, Decker SR. A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina. Biotechnology for Biofuels. 2015;8(1):45. https://doi.org/10.1186/s13068-015-0230-2
  15. Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, et al. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PloS One. 2013;8(2):e55185. https://doi.org/10.1371/journal.pone.0055185
  16. Manisya ZAW, Madihah S, Faridah Yu, Mohammed IAK, Zahangir A. Factor affecting endoglucanase production by Trichoderma reesei RUT C-30 from solid state fermentation of oil palm empty fruit bunches using Plackett-Burman desing. Afr J Biotechnol. 2011;10(46):9402-9. https://doi.org/10.5897/AJB11.008
  17. Maurya DP, Vats S, Rai S, Negi S. Optimization of enzymatic saccharifcation of microwave pretreated sugarcane tops through response surface methodology for biofuel. Indian J Exp Biol. 2013;51(11):992-6.
  18. Miller GI. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem. 1959;31(3):426-8. https://doi.org/10.1021/ac60147a030
  19. Peterson R, Nevalainen H.  Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology. 2012;158(1):58-68. https://doi.org/10.1099/mic.0.054031-0
  20. Rashid SS, Alam MZ, Karim MIA, Salleh MH. Optimization of nutrient supplients for cellulose production with the basal medium palm oil mill effuent. World academy of science, engineering and technology. 2009;36:811-817.
  21. Saravanan P, Muthuvelayudham R, Virythagiri T. Application of statistical design for cellulose by Trichoderma reesei using mango peel. Enzyme Res. 2012;2012:1-7. https://doi.org/10.1155/2012/157643
  22. Segato F, Damásio AR, de Lucas RC, Squina FM, Prade RA. Genomics Review of Holocellulose Deconstruction by Aspergillus. Microbiol Mol Biol Rev. 2014;78(4):588-613. https://doi.org/10.1128/MMBR.00019-14
  23. Sharma R, Kocher GS, Bhogal RS, Oberoi HS. Cellulolytic and xylanolytic enzymes from thermophilic Aspergillus terreus RWY. J Basic Microbiol. 2014;54(12):1367-77. https://doi.org/10.1002/jobm.201400187
  24. Singh A, Taylor LE II, Vander Wall TA, Linger J, Himmel ME, Podkaminer K, et al. Heterologous protein expression in Hypocrea jecorina: a historical perspective and new developments. Biotechnol Adv. 2015;33:142-54. https://doi.org/10.1016/j.biotechadv.2014.11.009
  25. Syrchin SO, Kharkevych OS, Pavlychenko AK, Yurieva OM, Nakonechna LT, Nekleva YuS, et al. Extracellular cellulolytic complexes production by microscopic fungi. Biotechnologia Acta. 2015;8(5):78-85. https://doi.org/10.15407/biotech8.05.078
  26. Syrchin SO, Kharkevych OS, Pavlychenko AK, Yurieva OM, Nakonechna LT, Pasik YuS, et al. [Biosynthesis peculiarities of extracellular cellulases and xylanase by Fennellia favipes M.J. Wiley et E.G. Simmons]. Factors in experimental evolution of organisms. 2014;15:137-40. http://nbuv.gov.ua/UJRN/feeo_2014_15_34. Ukrainian.
  27. Zhang J, Viikari L. Impact of xylan on synergistic effects of xylanases and cellulases in enzymatic hydrolysis of lignocelluloses. Appl Biochem Biotechnol. 2014;174:1393-1402. https://doi.org/10.1007/s12010-014-1140-7
  28. Zhang XZ, Zhang YHP. Cellulases: characteristics, sources, production, and applications. In: Shang-Tian Yang editors. Bioprocessing technologies in biorefnery for sustainable production of fuels, chemicals, and polymers. Wiley. 2013; Ch. 8, р. 131-46. https://doi.org/10.1002/9781118642047.ch8
  29. Zhang YHP, Himmel ME, Mielenz JR. Outlook for cellulose improvement: Screening and selection strategies. Biotechnol Adv. 2006;24:452-81. https://doi.org/10.1016/j.biotechadv.2006.03.003
  30. Zhang YHP, Hong J, Ye X. Cellulase Assays. Biofuels: Methods and Protocols. In: Mielenz JR, editor. Methods in Molecular Biology. Humana Press. 2009;581:213-31. https://doi.org/10.1007/978-1-60761-214-8_14