Mikrobiol. Z. 2017; 79(3):27-35. Ukrainian.
doi: https://doi.org/10.15407/microbiolj79.03.027

Regulation of Antimicrobial Activity of Surfactants, Synthesized by Nocardia vaccinii IMV B-7405

Pirog T.P.1,2, Nikituk L.V.1, Makienko V.O.1, Shevchuk T.A.2, Iutynska G.O.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. To study the possibility of enhancement antimicrobial activity of the surfactants synthesized Nocardia vaccinii ІMV B-7405 after introduction into the medium Escherichia coli ІEM-1 and Bacillus subtilis BT-2. Methods. Live and inactivated cells of bacteria inductors (E. coli ІEM-1 and B. subtilis BT-2) were introduced into cultivation medium of surfactant producer at the beginning of the process and in the exponential growth phase. Surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2 : 1). Antimicrobial against bacteria and yeast properties of the surfactant was determined by index of the minimum inhibitory concentration (MIC). Results. It has been established that introduction into cultivation medium of N. vaccinii ІMV B-7405 both live and inactivated E. coli ІEM-1 and B. subtilis BT-2 cells was accompanied by synthesis of surfactant with improved antimicrobial activity. The minimum inhibitory concentration against bacteria (E. coli ІЕМ-1, B. subtilis BТ-2, Pseudomonas sp. MІ-2, Proteus vulgaris PА-12) and yeast Candida albicans D-6 of surfactants synthesized in the presence of E. coli ІEM-1 and B. subtilis BT-2 were 6 – 50 μg/ml, that in 2.4 - 13 times lower than MIC of surfactant obtained in the medium without bacteria inductors. Conclusions. The data obtained indicate the possibility of regulation of antimicrobial activity of N. vaccinii ІMV B-7405 surfactants when cells of  other bacteria including E. coli ІEM-1 and B. subtilis BT-2 were introduced into cultivation medium of surfactant producer.

Key words: Nocardia vaccinii ІMV B-7405, surfactants, improved antimicrobial activity, bacteria inductors.

Full text (PDF, in Ukrainian)

  1. Wang H.H., Schaffner D.W. Antibiotic resistance: how much do we know and where do we go from here? Appl. Environ. Microbiol.  2011; 77(20):7093–7095. https://doi.org/10.1128/AEM.06565-11
  2. Roberts M.C., Schwarz S., Aarts H.J. Erratum: Acquired antibiotic resistance genes: an overview. Front Microbiol. 2012. https://doi.org/10.3389/fmicb.2012.00384
  3. Fair R.J., Tor Y. Antibiotics  and bacterial resistance in the 21st century. Perspect. Medicin. Chem.  2014; 6: 25−64. https://doi.org/10.4137/PMC.S14459
  4. Demain A.L. Importance of microbial natural products and the need to revitalize their discovery. J. Ind. Microbiol. Biotechnol. 2014; 41(2):185–201. https://doi.org/10.1007/s10295-013-1325-z
  5. Cortes-Sanchez A., Hernandez-Sanchez H., Jaramillo-Flores M. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. Res.  2013; 168(1):22–32. https://doi.org/10.1016/j.micres.2012.07.002
  6. Pirog T.P., Beregova K.A., Savenko I.V., Shevchuk T.A., Iutynska G.O. [Antimicrobial action of Nocardia vaccinii ІMV B-7405 surfactants]. Microbiol. Zh. 2015; 78(6):2−10. Ukrainian.
  7. Rojo-Bezares B., Sáenz Y., Navarro L., Zarazaga M., Ruiz-Larrea F., Torres C. Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must. Food Microbiol. 2007; 24(5):482−491. https://doi.org/10.1016/j.fm.2006.09.003
  8. Benitez L., Correa A., Daroit D., Brandelli A. Antimicrobial activity of Bacillus amyloliquefaciens LBM 5006 is enhanced in the presence of Escherichia coli. Curr. Microbiol. 2011; 62(3): 1017−1022. https://doi.org/10.1007/s00284-010-9814-z
  9. Maldonado-Barragán A., Caballero-Guerrero B., Martín V., Ruiz-Barba J.L., Rodríguez J.M. Purifcation  and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina  of a healthy woman. BMC Microbiol. 2016. https://doi.org/10.1186/s12866-016-0663-1
  10. Dusane D.H., Matkar P., Venugopalan V.P., Kumar A.R., Zinjarde S.S. Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms. Curr. Microbiol. 2011; 62(3):974−980. https://doi.org/10.1007/s00284-010-9812-1
  11. Li B., Li Q., Xu Z., Zhang N., Shen Q., Zhang R. Responses of benefcial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production.  Front. Microbiol. 2014. https://doi.org/10.3389/fmicb.2014.00636
  12. Cawoy H., Debois D., Franzil L., De Pauw E., Thonart P., Ongena M. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb. Biotechnol. 2015; 8(2):281−295. https://doi.org/10.1111/1751-7915.12238
  13. Mazzola P., Jozala A., Lencastre-Novaes L., Moriel P., Vessoni-Penna T. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Braz. J. Pharm. Sci.  2009; 45(2): 241–248. https://doi.org/10.1590/S1984-82502009000200008
  14. Onaka H., Mori Y., Igarashi Y., Furumai T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species.  Appl. Environ. Microbiol. 2011; 77(2): 400−406. https://doi.org/10.1128/AEM.01337-10
  15. Asamizu S., Ozaki T., Teramoto K., Satoh K., Onaka H. Killing of mycolic acid-containing bacteria aborted induction of antibiotic production by Streptomyces in combinedculture. PLoS One. 2015. https://doi.org/10.1371/journal.pone.0142372
  16. Marmann A., Aly A.H., Lin W., Wang B., Proksch P. Co-cultivation − a powerful emerging tool for enhancing the chemical diversity of  microorganisms. Mar Drugs. 2014; 12(2):1043−1065. https://doi.org/10.3390/md12021043