Mikrobiol. Z. 2017; 79(3):3-13. Ukrainian.
doi: https://doi.org/10.15407/microbiolj79.03.003

Phytohormones Biosynthesis by Soil Molds Cladosporium cladosporioides

Biliavska L.O.1, Nadkernychna O.V.2, Kopilova O.B.2

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

2Institute of Agricultural Microbiology and agricultural production NAAS
97 Shevchenko Str., Chernihiv, 14027, Ukraine

The aim. Investigate the growth-regulatory activity of Cladosporium soil molds culture liquids and phytohormone biosynthesis. Methods. Determination of C. cladopsporioides 525 and C. cladopsporioides 495 culture liquid growth-regulatory activity was investigated with methods of specifc bioassay for phytohormones maintenance (auxins, cytokinins and abscisic acid) such as TLC-method. Results. We obtained that soil molds Cladosporium cladosporioides capable for synthesis of phytostimulating substances such as auxins, cytokinins and gibberellins.There were two promising strains selected C. cladosporioides 525 and C. cladosporioides 495. The strain C. cladosporioides 495 signifcantly exceeded C. cladosporioides 525 by the total level of synthetic auxin and also by its ability for synthesizing physiologically active plant auxin - indole-3-acetic acid. Among cytokinins synthesized with the molds were found zeatin, zeatin riboside, izopentiniladenin and izopentiniladenozin. Their maintenance were near equal in culture liquid. Both strains of molds were capable to produce large amounts of gibberellic acid. Conclusions. The ability of the strains to produce phytohormonal substances allows us to consider them promising to be used in agricultural production.

Key words: Cladosporium cladosporioides, plant hormones, auxins, cytokinins, gibberellins.

Full text (PDF, in Ukrainian)

  1. Kulaeva ON, Kuznetsov VV  [Recent advances and perspectives in the study of cytokines]. Russian Journal of Plant Physiology. 2002; 49(4):626-640. Russian. https://doi.org/10.1023/A:1016332614061
  2. Tsavkelova EA, Klimova SYu, Cherdyntseva TA, Netrusov AI [Hormones and hormone-like substances of microorganisms: A review]. Applied Biochemistry and Microbiology. 2006; 42(3):261–268. Russian. https://doi.org/10.1134/S000368380603001X
  3. Patent 92094, UA, С12N1/20 №2003109795 / Iutynska GO, Biliavska LO, Dragovoz IV, Kozyritska VE, Valagurova OV, Yavorska VK, Kurchiy BO. [The use of Streptomyces avermitilis strain IMV Ac-5015 as a producer of complex phytohormones]. Bull. 2005; 9. Ukrainian.
  4. Patent 2085078 RU, A01N63 / 04, C12N1 / 14, S12R1: 645 / Muromtsev GS, Krasnopolskaya LM, AP Makeeva, Nagubnova LA. [Strain Mikromitcety Cercospora sp. - Producing plant hormone abscisic acid]. Publ. 1997. Russian.
  5. Patent 2084531 RU, A12R27 / 00 A01 N63 / 04, C12N1 / 14, S12R1: 77 / Muromtsev GS, Krasnopolskaya LM. [Strain Mikromitcety Fusarium moniliforme - producing plant hormones gibberellin A4A7]. Publ. 1997. Russian.
  6. Feofliva EP [Fungi: the heterogeneity of physiological and biochemical characteristics and the proximity to the plants, animals and prokaryotes] Applied Biochemistry and Microbiology. 2001; 37(2):288-299. Russian.
  7. Savinsky SV, Kofman ISh, Kofanov VI, Stasevskaya IL [Methodological approaches to the determination of plant hormones using TLC-method] Physiology and biochemistry of cultivated plants. 1987; 19(2):210-215. Ukrainian.
  8. Savinsky SV, Dragovoz IV, Pedechko VK. [Determination of zeatin, indolyl-3-acetic acid and abscisic plant samples from one probe with PLC-method]. Physiology and biochemistry of cultivated plants. 1991; 23(6):606-614. Ukrainian.
  9. Muromcev GS, Agnistikova VN. [Gibberellines]. М.: Nauka; 1984. Russian.
  10. Biliavska LO, Kozyritska VE, Valaghurova EV, Iutynska GA. [Biologically active substances of preparation avercom]. Microbiol Z. 2012; 74(3):10-15. Ukrainian.
  11. Epstein E, Müller J.-L. Indole-3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiologia plantarum. 1993; 88:382-389. https://doi.org/10.1111/j.1399-3054.1993.tb05513.x
  12. Lacret R, Oves-Costales D, Gomez C, Diaz C, Cruz M, Perez-Victoria I, Vicente F, Genilloud O, Reyes F. New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis. Mar. Drugs. 2015; 13: P.128-140. https://doi.org/10.3390/md13010128
  13. Kravchenko LV, Azarova TS, Makarova NM, Tihonovich IA. [The role of tryptophan in the root exometabolites for ftostimulating activity of rhizobacteria]. Microbiol. 2004; 73(2):195-198. Russian.
  14. Tsavkelova EA, Klimova SYu, Cherdyntseva TA, Netrusov AI [The microorganisms - producers of plant growth stimulants and their practical application (review)]. Applied Biochemistry and Microbiology. 2006; 42(2):133-143. Russian. https://doi.org/10.1134/S0003683806020013
  15. Chung KR, Shilts T,  Erturk U. et al Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiology Letters. 2003; 226(1):23-30. https://doi.org/10.1016/S0378-1097(03)00605-0
  16. Furukawa T, Koga J, Adachi T. et al. Effcient Conversion of L-Tryptophan to Indole-3-Acetic Acid and/or Tryptophol by Some Species of Rhizoctonia. Plant Cell Physiol. 1996; 37:899-905. https://doi.org/10.1093/oxfordjournals.pcp.a029037
  17. Maor R, Haskin S, Levi-Kedmi H, Sharon A. In Planta Production of Indole-3-Acetic Acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol. 2004; 70(3):1852-1854. https://doi.org/10.1128/AEM.70.3.1852-1854.2004
  18. Desjardins AE, Manandhar HK, Plattner RD. et al. Fusarium species from nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl. Environ. Microbiol. 2000; 66(3):1020-1025. https://doi.org/10.1128/AEM.66.3.1020-1025.2000
  19. Mitter N, Srivastava A., Renu K.et al. Characterization of gibberellin producing strains of Fusarium moniliforme based on DNA polymorphism. Mycopathologia. 2002; 153(4):187-193. https://doi.org/10.1023/A:1014946217539
  20. Janitor A. Growth of mycelia of phytopathogenic fungi after application of abscisic acid in in vitro conditions. Plant Protection Science 2002; 38(3):94-97. https://doi.org/10.17221/4857-PPS
  21. Iutynska GO, Biliavska LA, Kozyritska VE. [Microbial bioformulations phytoprotective, growth regulator and adaptogenic action for crop production]. Theory, practice and perspectives of the application of biologically active compounds in agriculture: proceedings of the XIth international scientifc-applied conference daRostim, 2015 June 17–19, Syktyvkar, Russian.
  22. Vereecke D, Burssens S, Simon-Mateo C. The Rhodococcus fascians-plant interaction: morphological traits and biotechnological applications. Planta. 2000; 210 (2):0241-0251. https://doi.org/10.1007/PL00008131
  23. Dugan FM, Schubert K, Braun U Check-list of Cladosporium names. Schlechtendalia. 2004; 11:1-103.
  24. Crous PW, Braun U, Schubert K, Groenewald JZ. Delimiting Cladosporium from morphologically similar genera. Stud Mycol. 2007; 58:33-56. https://doi.org/10.3114/sim.2007.58.02
  25. Kravchenko NO, Kopylova OB, Golovach OV, Dmytruk OM. [Pathogenicity valuation of soil molds from Cladosporium genus]. Agricultural Microbiology: inter. thematic. science. coll. - Chernihiv: ISMAV NAAS, 2015; 21: 7-11. Ukrainian.