Mikrobiol. Z. 2017; 79(2):67-77. Ukrainian.
doi: https://doi.org/10.15407/microbiolj79.02.067

Exometabolites of Bacillus amyloliquefaciens subsp. plantarum IMV B-7524 Strain
with Growth-Stimulating Activity

Grabova A.Yu.1, Dragovoz I.V.1, Leonova N.O.1, Ostapchuk A.N.2, Avdeeva L.V.1

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

2Odessa Mechnikov National University
2 Dvoryanskaya Str., Odessa, 65082, Ukraine

Purpose. To perform qualitative and quantitative analysis of exometabolites of Bacillus amyloliquefaciens subsp. plantarum IMV B-7524 strain, causing its growth-stimulating activity. Methods. Microbiological, physiological and physical-chemical methods have been used, such as TLC spectrodensitometry, liquid chromatography-mass spectrometry. Results. It has been found that supernatant cultural liquid of B. amyloliquefaciens subsp. plantarum IMV B-7524 strain at a dilution of 1 : 200 and higher stimulates germination of seeds and biomass accumulation by winter wheat plants. According to the results of a specifc bioassay it has been determined that this effect is provided by substances with auxin, cytokinin and gibberellic activity. It has been shown that the content of these substances in the cultural liquid is 42, 70.5 and 341.9 µg/g absolutely dry biomass, respectively. Abscisic acid also has been found among exometabolites of the strain. Conclusions. The growth-stimulating activity of the studied strain of Bacillus is caused by the presence of phytohormones–stimulants among the exometabolites, such as auxins, cytokinins, gibberellins, which can take a part in the induction of protective reaction of plants.

Key words: Bacillus amyloliquefaciens subsp. plantarum IMV B-7524, exometabolites, growth-stimulating activity, phytohormones.

Full text (PDF, in Ukrainian)

  1. Cakmakci R, Erat M, Erdogan U, Donmez MF The infuence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J. Plant Nutr. Soil. Sci. 2007;170(2):288-295. https://doi.org/10.1002/jpln.200625105
  2. Melent’ev AI. Aerobic spore-forming bacteria Bacillus Cohn. in agro-ecosystems. – M:Nauka; 2007.
  3. Tsavkelova EA, Klimova SYu, Cherdyntseva TA, Netrusov AI. The microorganisms – producers of plant growth stimulants and their practical application. J. Appl. Biochemistry and Microbiology. 2006;42(2):133-143.
  4. Grabova AY, Dragovoz IV, Kruchkova LA, Pasichnik LA, Avdeeva LV. [Bacillus strains’s screening – active antagonists of bacterial and fungal phytopathogens]. Mikrobiol Z. 2015;77(6):21-30. Ukrainian.
  5. Grabova AYu, Dragovoz IV, Avdeevа LV. [Biosecurity, phytotoxicity and sensitivity for antibiotics of the Bacillus sp. C6 strain – antagonist of phytopathogenic bacteria and fungi]. Bulletin of Kharkiv National Agricultural University, Series Biology. 2015;35(2):80-86. Russian.
  6. Vasilkova MV, Pylaeva GI, Sintsov KN, Zlobin AA [Evaluation of pathogenic properties of microorganisms – destructors organophosphorus compounds]. Proceedings of the Intern. Conf. “Science and Education for the purposes of biosafety” Pushchino Oct 6-9; 2008 – Pushchino. Russian.
  7. Boychuk OB Zaitsev LM [Application of short segments wheat coleoptiles test to determine the auxin].Ukr. Botan. Zh. 1977;6:632-636. Ukrainian.
  8. Kholodny Institute of Botany. [Guidelines on determination of plant hormones]. – Kyiv; 1988. Russian.
  9. Muromtsev GS, Agnistikova VN. [Gibberellins: Monography]. Moscow: Nauka; 1984. Russian.
  10. Savinskiy SV, Dragovoz IV, Pedchenko VK. [Determination of indole-3-acetic acid and abscisic acid in a plant sample by HPLC]. Fiziol. and Biochem. cult. sol. 1991;23(6):611-619. Russian.
  11. Bhalla K. Singh SB, Agarwal R. Quantitative determination of gibberellins by high performance liquid chromatography from various gibberellins producing Fusarium strains. Environmental Monitoring and Assessment. 2010;167(1):515-520. https://doi.org/10.1007/s10661-009-1068-5
  12. Kefeli VI. [Vitamins and some other members of non-hormonal plant growth regulators]. J. Appl. Biochemistry and Microbiology.1981;18(1):5-24. Russian.
  13. Davies PJ, editor. Plant hormones: biosynthesis, signal transduction, action! Dordrecht: Springer; 2004.
  14. Sarwar M, Arshad M, Martens DA, Frankenberger WT. Tryptophan-dependent biosynthesis of auxins in soil. Plant and Soil. 1992;147:207-215. https://doi.org/10.1007/BF00029072
  15. Idris EE, Iglesias DJ, Talon M, Borriss R. Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. MPMI. 2007;20(6):619–626. https://doi.org/10.1094/MPMI-20-6-0619
  16. Tsavkelovа EA, Cherdyntseva TA, Netrusov AI. Auxin Production by Bacteria Associated with Orchid Roots. Microbiology. 2005;74(1):46–53. https://doi.org/10.1007/s11021-005-0027-6
  17. Leonova NA, Dankevich LA. [Exogenous auxin of pathogenic and rhizobia bacteria]. In: Achievements and problems of genetics, breeding and biotechnology. Kyiv: Logos; 2012. Ukrainian.
  18. Pinton R, Varanini Z, Nannipieri P, editors. The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. 2nd ed. Boca Raton: CRC Press; 2007. https://doi.org/10.1201/9781420005585
  19. Silva T, Davies PJ. Elongation rates and endogenous indoleacetic acid levels in roots of pea mutants differing in internode length. Physiol. Plantarum. 2007;129:804–812. https://doi.org/10.1111/j.1399-3054.2006.00869.x
  20. Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R. FZB24. Bacillus subtilis – mode of action of a microbial agent enhancing plant vitality. Pfanzenschutz Nachrichten Bayer 1/00. 2000;1:72-93.
  21. Grabova AYu, Dragovoz IV, Iliash VM, Muchnyk FV, Avdeeva LV. The effect of Bacillus amyloliquefaciens subsp. plantarum IMV B-7524 strain exometabolites on the induction of defense reactions in winter wheat plants. Mikrobiol Z. 2016;78(2):80-88.
  22. Morgun VV, Kots SJ, Kirichenko EV. [Growth-stimulating rhizobacteria and their practical application. Physiology and biochemistry of cultivated plants]. 2009;41(3):187-207. Russian.
  23. Mauch-Mani B, Mauch F. The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology. 2005;8: 409-414. https://doi.org/10.1016/j.pbi.2005.05.015
  24. De Vleesschauwer D, Yang Y, Cruz CV, Hofte M. Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling. Plant Physiology. 2010;152:2036-2052. https://doi.org/10.1104/pp.109.152702
  25. Hooley R. Gibberellins: perception, transduction and responses. Plant Molecular Biology. 1994;26:1529-1555. https://doi.org/10.1007/BF00016489
  26. Nefed’eva EE, Mazey NG. [Determination of the A3 gibberellin in plants be HPLC]. Applied Biochemistry and Microbiology. 2009;45(4):502-507. Russian.
  27. Dimova SB. [Phytohormones — microbial waste products. Methods of their determination]. Agricultural Microbiology. 2013;18:159-185. Ukrainian.
  28. Karadeniz A, Topcuoglu SF, Inan S. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World Journal of Microbiology & Biotechnology. 2006;22:1061–1064. https://doi.org/10.1007/s11274-005-4561-1
  29. Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia plantarum. 2001;111:206–211. https://doi.org/10.1034/j.1399-3054.2001.1110211.x
  30. Joo G-J, Kim Y-M, Lee I-J, Song K-S, Rhee I-K. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnology Letters. 2004;26:487–491. https://doi.org/10.1023/B:BILE.0000019555.87121.34
  31. Titov AF, Talanova VV. [Plants resistance and phytohormones]. Petrozavodsk; 2009. Russian.