Mikrobiol. Z. 2017; 79(2):23-32. Russian.
doi: https://doi.org/10.15407/microbiolj79.02.023

Functioning of Sulfidogenic Microbial Community, Including Transcojugants
with the Rp4 and R68.45 Plasmids

Abdulina D.R., Purish L.M., Iutynska G.O.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim of the study is to evaluate the infuence of the extrachromosomal genetic elements (i.e. plasmids) on the morphological and corrosion features of the sulfdogenic microbial communities during the bioflm formation on steel surface. Мethods. Microbiological, molecular biological. Results. Bacteria from sulfdogenic microbial community harboring RP4 and R68.45 plasmids changed their colony morphotype: the transconjugated bacteria formed the colonies of the S-, O-types instead the R-type colonies of the wild strains. The changes in the physiological and corrosive activity of the transconjugated bacteria and sulfdogenic communities were demonstrated. Under the bioflm formation on the steel surface by the sulfdogenic microbial community including Desulfovibrio sp. 10, Bacillus subtilis 36 and transconjugated strain Pseudomonas aeruginosa 27 (R68.45) the protein synthesis in the bioflm was decreased in 2.3 - 4.4 times, the hydrogen sulfde production – 1.5 times and corrosion rate inhibition –  2 times in comparison with non-plasmid harboring community. Conclusions. The study of the infuence of the extrachromosomal genetic elements during bioflm formation by the sulfdogenic microbial community may help to create new approaches for corrosion prevention and develop alternative biologically based anticorrosion measures for metals corrosion protection.

Key words: sulfdogenic microbial community, transconjugants, corrosive activity.

Full text (PDF, in Russian)

  1. Аbdulina DR, Purish LМ, Iutynska GA. [Possibility of the plasmid transfer within bacteria – compounds of the sulfdogenic microbial community]. Mikrobiol. Zh. 2013; 75(4): 23-29. Russian.
  2. Akhmetov LI, Filonov AE, Puntus IF, Kosheleva IA, Nechaeva IA et al. Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems. Microbiology (Mikrobiologiya). 2008; 77(1): 23-32. https://doi.org/10.1134/S0026261708010049
  3. Asaulenko LG, Purish LМ Аbdulina DR. [Taxonomic position of certain representatives of sulfdogenic corrosive microbial community]. Mikrobiol. Zh. 2010. 72(4): 3-10. Ukrainian.
  4. Christensen BB., Sternberg C, Andersen JB, Eberl L, Moller S et al. Establishment of new genetic traits in a microbial bioflm community. Appl. Environ. Microbiol. 1998; 64(6): 2247-2255.
  5. Davey ME, O’Toole GA. Microbial bioflms: from ecology to molecular genetics. Microbiol. Mol. Biol. Reviews. 2000; 64(4): 847–867. https://doi.org/10.1128/MMBR.64.4.847-867.2000
  6. Ghigo J-M. Natural conjugative plasmids induce bacterial bioflm development. Nature. 2001; 412: 442-445. https://doi.org/10.1038/35086581
  7. Haagensen JA, Hansen SK, Johansen T. In situ detection of gorizontal transfer of mobile genetic elements. FEMS Microbiol. Ecol. 2002; 42(2): 261-268. https://doi.org/10.1111/j.1574-6941.2002.tb01016.x
  8. Hansen S, Rainey PB, Haagensen J, Molin S. Evolution of species in a bioflm community. Nature. 2007; 445(1): 533-536. https://doi.org/10.1038/nature05514
  9. Hausner M, Wuertz S. High rates of conjugation in bacterial bioflms as determined by quantitative in situ analysis. Appl. Environ. Microbiol. 1999; 65: 3710-3713.
  10. Korrosiya: mannual. ed by. Shraer LL. Мoscow: Metallurgiya, 1981. 632 p. Russian.
  11. Loo CY, Corliss DA, Ganeshkumar N. Streptococcus gordonii bioflm formation: Identifcation of genes that code for bioflm phenotypes. J. Bacteriol. 2000; 182(5): 1374-1382. https://doi.org/10.1128/JB.182.5.1374-1382.2000
  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journ. Biol. Chem. 1951; 193(1): 265-275.
  13. Lur’ie YY [Unifcirovannye metody analysa vod] Moscow: Khimiya; 1971. 194 p. Russian.
  14. Maniatis T., Fritsch EE, Sambrook J. Molecular cloning. A laboratory manual. translated in rus. ed. by AA Baev, KG Skryabin. Мoscow: Мir, 1984. 480 p. Russian.
  15. Mogil’naya OA, Krylova TYu, Popova LYu. The morphological characteristics and the dynamics of bioflms formed by a transgenic Bacillus subtilis strain. Microbiology (Mikrobiologiya). 2003; 72(4): 509-510. https://doi.org/10.1023/A:1025065311507
  16. Parsek MR Bioflms 2003: emerging themes and challenges in studies of surface associated microbial life. J. Bacteriol. 2004; 186(14): 4427-4440. https://doi.org/10.1128/JB.186.14.4427-4440.2004
  17. Plakunov VK, Strelkova EA, Zhurina MV. Persistence and adaptive mutagenesis in bioflms. Microbiology (Mikrobiologiya). 2010; 79(4): 424-434. https://doi.org/10.1134/S0026261710040028
  18. Postgate JR. The sulphate-reducing bacteria. 2nd ed.Cambridge: Cambridge Univ. Press; 1984. 208 p.
  19. Purish LM, Asaulenko LG, Abdulina DR, Vasyliev VN, Iutynska GA. Role of polymeric complexes in the formation of bioflms by corrosive bacteria on steel surface. Appl. Biochem. Microbiol. 2012; 48(3): 262-269. https://doi.org/10.1134/S0003683812030118
  20. Purish LМ, Аsaulenko LG. Dynamics of successive changes in sulphidogenic microbial association under the conditions of formation of the bioflm on steel surface. Mikrobiol. Zhurn. 2007; 69(6): 19-25. Ukrainian.
  21. Thomas CM, Nielsen K. Mechanisms of and barriers to horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 2005; 3(9): 711-721. https://doi.org/10.1038/nrmicro1234