Mikrobiol. Z. 2017; 79(1):87-99.
doi: https://doi.org/10.15407/microbiolj79.01.087

Biodiversity and Physiological Properties of Bacteria Forming Systems with Glycine max (L.) Merril

Iutynska G.O., Tytova L.V., Leonova N.O.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Biological nitrogen fxation provides a signifcant share of nitrogen nutrition of plants, including soybean. The effciency of soybean-rhizobiа systems depends on physiological properties and relationships between the introduced microsymbiont and indigenous microorganisms. Besides, the key of ecological balance in agrophytocenoses and their increased stress resistance and productivity lies in preservation of biodiversity.
Evaluation of diazotrophic associations’ composition of soybean rhizosphere by analyzing the diversity of nifH gene, that is a molecular marker of nitrogen fxation, has revealed representatives of phyla Firmicutes and Proteobacteria. Microorganisms belonging to the Clostridium, Paenibacillus and Spirochaeta genera were found to be predominant among them. It was shown that Bradyrhizobium japonicum was able to synthesize phytohormones with stimulating action, such as auxins, cytokinins and phytohormones-inhibitors (abscisic acid and ethylene). Cultivation in the presence of favonoids genistein and naringenin has led to the narrowing of the range and reduction of the amount of synthesized phytohormones. The inhibiting effect of favonoids on the synthesis of phytohormones by soybean rhizobia can be explained by the change in their metabolism toward the launch of effective nodulation mechanisms. The application of complex inoculation contributed to better development of agronomically useful microorganisms in rhizosphere, preservation of their diversity and increase of soil biological activity.

Key words: soybean, rhizospheric microorganisms, biodiversity, nifH gene, phytohormones of Bradyrhizobium japonicum, favonoids.

Full text (PDF, in English)

  1. Umarov MM, Kurakov AV, Stepanov AL. Microbial transformation of nitrogen in soil. Moscow: GEOS. – 2007. 138 p. Russian.
  2. Tytova LV, Leonova NO, Antipchuk AF. Nitrogen fxing microorganisms in microbial-plant systems. Bioregulyatsiya microbno-rastitel’nykh system (Bioregulation of Microbial-Plant Systems). Kiev: Nichlava. – 2010: 99–195. Russian.
  3. Peoples MB, Herridge DF, Ladha JK. Biological nitrogen fxation: an effcient source of nitrogen for sustainable agricultural production. Plant Soil. 1995; 174: 3–28. https://doi.org/10.1007/BF00032239
  4. Spaink HP, Kondorosi A, Hooykaas PJJ, editors. The Rhizobiaceae. Molecular biology of model plant-associated bacteria. Springer Science & Business Media: Kluwer Academic Publ.; 1998.
  5. Ariel F, Brault-Hernandez M, Laffont C, Huault E, Brault M, Plet J, et al. Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula. Plant Cell. 2012; 24(9): 3838–52. https://doi.org/10.1105/tpc.112.103267
  6. Davies PJ, editor. Plant hormones: biosynthesis, signal transduction, action! Dordrcht. Boston. London: Kluwer Acad. Publishers; 2004.
  7. Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007; 31: 425–48. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  8. Zhukov VA, Shtark OY, Borisov AY, Tikhonovich IA. Breeding to improve symbiotic effectiveness of Legumes. In: Andersen SB, ed. Plant breeding from laboratories to felds. Rijeka, Croatia; 2013; 167–207.
  9. Gonzalez JE, Marketon MM. Quorum sensing in nitrogen-fxing rhizobia. Microbiol Mol Biol Rev. 2003; 67(4): 574–92. https://doi.org/10.1128/MMBR.67.4.574-592.2003
  10. Ferguson BJ, Mathesius U. Signaling interactions during nodule development. J Plant Growth Reg. 2003; 22(1): 47–72. https://doi.org/10.1007/s00344-003-0032-9
  11. Rao JR, Cooper JE. Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can infuence gene inducing activity. Mol. Plant-Microbe Interact. 1995; 8(6): 855–62. https://doi.org/10.1094/MPMI-8-0855
  12. Pueppke SG, Bolaños-Vásquez MC, Werner D, Bec-Ferté M-P, Promé J-C, Krishnan HB. Release of favonoids by the soybean cultivars McCall and Peking and their perception as signals by the nitrogen-fxing symbiont Sinorhizobium fredii. Plant Physiol. 1998; 117(2): 599–06. https://doi.org/10.1104/pp.117.2.599
  13. Ovreas L, Torsvik V. Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol. 1998; 36: 303–15. https://doi.org/10.1007/s002489900117
  14. Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G, Schulze R, et al. Detection and in situ identifcation of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett. 1997; 153: 181–90. https://doi.org/10.1111/j.1574-6968.1997.tb10480.x
  15. Weber S, Stubner S, Conrad R. Bacterial Populations Colonizing and Degrading Rice Straw in Anoxic Paddy Soil. Appl And Environmental Microbiology. 2001; 67(3): 1318–27. https://doi.org/10.1128/AEM.67.3.1318-1327.2001
  16. Watt M, Hugenholtz P, White R, Vinall K. Numbers and locations of native bacteria on feld-grown wheat roots quantifed by fuorescence in situ hybridization (FISH). Environmental Microbiology. 2006; 8(5): 871–84. https://doi.org/10.1111/j.1462-2920.2005.00973.x
  17. Smit E, Leefang GP, Wernars K. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplifed ribosomal DNA restriction analysis. FEMS Microbiol Ecol. 1997; 23: 249–61. https://doi.org/10.1111/j.1574-6941.1997.tb00407.x
  18. Zhan J, Sun Q. Diversity of free-living nitrogen-fxing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration. J of Environmental Sciences. 2011; 23(3): 476–87. https://doi.org/10.1016/S1001-0742(10)60433-0
  19. Henckel T, Jäckel U, Schnell S, Conrad R. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol. 2000; 66: 1801–08. https://doi.org/10.1128/AEM.66.5.1801-1808.2000
  20. Poly F, Ranjard L, Nazaret S, Gourbière F, Monrozier LJ. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol. 2001; 67: 2255–62. https://doi.org/10.1128/AEM.67.5.2255-2262.2001
  21. Rösch C, Mergel A, Bothe H. Biodiversity of denitrifying and dinitrogen-fxing bacteria in an acid forest soil. Appl Environ Microbiol. 2002; 68: 3818–29. https://doi.org/10.1128/AEM.68.8.3818-3829.2002
  22. Diallo MD, Willems A, Vloemans A, Cousin S, Vandekerckhove TT, de Lajudie P, et al. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fxing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environ Microbiol. 2004; 6(4): 400–15. https://doi.org/10.1111/j.1462-2920.2004.00577.x
  23. Zhang Y, Li D, Wang H, Xiao Q, Liu X. Molecular diversity of nitrogen-fixing bacteria from the Tibetan Plateau, China. FEMS Microb Ecol. 2006; 260: 134–42. https://doi.org/10.1111/j.1574-6968.2006.00317.x
  24. Wakelin SA, Colloff MJ, Harvey PR, Marschner P, Gregg AL, Rogers S. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microb Ecol. 2007; 59: 661–70. https://doi.org/10.1111/j.1574-6941.2006.00235.x
  25. Sorokin ID, Kravchenko IK, Doroshenko EV, Boulygina ES, Zadorina EV, Tourova TP, Sorokin DYu. Haloaloalkaliphilic diazotrophs in soda solonchak soils. FEMS Microb Ecol. 2008; 65: 425–33. https://doi.org/10.1111/j.1574-6941.2008.00542.x
  26. Zadorina EV, Slobodova NV, Boulygina ES, Kolganova TV, Kuznetsov BB, Kravchenko IK. Analysis of the diversity of diazotrophic bacteria in peat soil by cloning of the nifH gene. Microbiology (Microbiologiya). 2009; 78(2): 218–26. https://doi.org/10.1134/S0026261709020131
  27. Widmer F, Shaffer BT, Porteous LA, Seidler RJ. Analysis of nifH gene pool complexity in soil and litter at a Douglas Fir Forest Site in the Oregon Cascade Mountain Range. Appl Environ Microbiol., 1999; 65: 374–80.
  28. Mehta MP, Butterfeld DA, Baross JA. Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol. 2003; 69: 960–70. https://doi.org/10.1128/AEM.69.2.960-970.2003
  29. Kizilova AK, Titova LV, Kravchenko IK, Iutinskaya GA. Evaluatoin of the diversity of nitrogen-fxing bacteria in soybean rhizosphere by nifH gene analysis. Microbiology. 2012; 81(5): 621–25. https://doi.org/10.1134/S0026261712050116
  30. Tytova LV, Leonova NO, Brovko IS, Iutynska GA. [Complex microbial formulation Ecovital for leguminous crops seeds inoculation]. Patent UA 101388 C2 (Ukraine), IPS (2013.01) C 05 F 11/100, C 12 P 39/00. Pub. 25.03.2013, Bull. N 6. Ukrainian.
  31. Sarita S, Priefer UB, Prell J, Sharma PK. Diversity of nifH gene amplifed from rhizosphere soil DNA. Current Science. 2008; 94(1): 109–15.
  32. Lovell CR, Piceno YR, Quattro JM, Bagwell CE. Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass, Spartina alternifora. Appl Environ Microbiol. 2000; 66(9): 3814–22. https://doi.org/10.1128/AEM.66.9.3814-3822.2000
  33. Boulygina ES, Zadorina EV, Kuznetsov BB. [Investigation of structure of diazotrophic communities of peat soil]. Agrarian science. 2008; 4: 13–5. Russian.
  34. Tytova LV, Brovko IS, Kizilova AK, Kravchenko IK, Iutynska GO. Effect of Complex Microbial Inoculants on the Number and Diversity of Rhizospheric Microorganisms and the Yield of Soybean. International Journal of Microbiological Research. 2013; 4(3): 267–74.
  35. Maheshwari DK. Bacteria in Agrobiology: Plant Probiotics. Springer-Verlag Berlin Heidelberg; 2012.
  36. Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol. 2014; 40(7): 770–90. https://doi.org/10.1007/s10886-014-0472-7
  37. Khalid A, Arshad M, Zahir ZA. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol. 2004; 96: 473–80. https://doi.org/10.1046/j.1365-2672.2003.02161.x
  38. Berg G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol. 2009; 84: 11–8. https://doi.org/10.1007/s00253-009-2092-7
  39. Dragovoz IV, Leonova NO, Biliavska LO, Yavorska VK, Iutynska GO. [Phytohormone production by some free-living and symbiotic soil microorganisms]. Reports of the NASU. 2010; 12: 154–59. Ukrainian.
  40. Leonova NO. [Auxins and cytokinines synthesis by Bradyrhizobium japonicum under favonoids infuence]. Mikrobiol Z. 2015; 77(5): 95–103. Ukrainian.
  41. Silva T, Davies PJ. Elongation rates and endogenous indoleacetic acid levels in roots of pea mutants differing in internode length. Physiol Plantarum. 2007; 129: 804–12. https://doi.org/10.1111/j.1399-3054.2006.00869.x
  42. Fukaki H, Tasaka M. Hormone interactions during lateral root formation. Plant Mol Biol. 2009; 69(4): 437–49. https://doi.org/10.1111/j.1744-7348.2010.00439.x
  43. Youning W, Kexue L, Liang Ch, Yanmin Z, Haipei L, Yiping T, et al. microRNA167-directed regulation of the auxin response factors, GmARF8a and GmARF8b, is required for soybean (Glycine max L.) nodulation and lateral root development. Plant Physiol. 2015; 168(3): 984–99.
  44. Dodd IC, Zinovkina NY, Safronova VI, Belimov AA. Rhizobacterial mediation of plant hormone status. Ann Appl Biol. 2010; 157: 361–79.
  45. Dragovoz IV, Leonova NO, Iutynska GO. [Phytohormones synthesis by Bradyrhizobium japonicum strains with different symbiotic effectiveness]. Mikrobiol Z. 2011; 73(4): 29–35. Russian.
  46. Patent UA 95878 C2 МПК А01N 63/02 С05F 11/08. Method for determining the biological activity of nodule bacteria Bradyrhizobium genus / Dragovoz IV, Leonova NO, Iutynska GO, Yavorska VK. Publ. 12.09.2011. Bull N 17.
  47. Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K. Cytokinin: secret agent of symbiosis. Trends in Plant Sci. 2008; 13(3): 115–20. https://doi.org/10.1016/j.tplants.2008.01.003
  48. Held M, Hou H, Miri M, Huynh C, Ross L, Hossain MS, et al. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. Plant Cell. 2014; 26(2): 678–94. https://doi.org/10.1105/tpc.113.119362
  49. Op den Camp RHM, De Mita S, Lillo A, Cao Q, Limpens E, Bisseling T, et al. A phylogenetic strategy based on a legume-specifc whole genome duplication yields symbiotic cytokinin type-A response regulators. Plant Physiol. 2011; 157(4): 2013–22. https://doi.org/10.1104/pp.111.187526
  50. Mauch-Mani B, Mauch F. The role of abscisic acid in plant–pathogen interactions. Cur Opin Plant Biol. 2005; 8: 409–14. https://doi.org/10.1016/j.pbi.2005.05.015
  51. Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, Uchiumi T, et al. Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol. 2004; 45(7): 914–22. https://doi.org/10.1093/pcp/pch107
  52. Leonova NO. Abscisic acid and ethylene production by biotechnological strains of Bradyrhizobium japonicum. Biotechnologia Acta. 2015; 8(5): 64–70. https://doi.org/10.15407/biotech8.05.064
  53. Oldroyd GED, Engstrom EM, Long SR. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell. 2001; 13(8): 1835–49. https://doi.org/10.1105/tpc.13.8.1835
  54. Wang KLC, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002; 14: 31–151. https://doi.org/10.1105/tpc.001768
  55. Caba JM, Regalde L, Ligero F. Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. Plant Cell Environ. 1998; 21(1): 87–93. https://doi.org/10.1046/j.1365-3040.1998.00242.x
  56. Geurts R, Bisseling T. Rhizobium Nod factor perception and signaling. Plant Cell. 2002; 14(suppl.): 239–49. https://doi.org/10.1105/tpc.002451
  57. Sugiyama A, Shitan N, Yazaki K. Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal favonoid in legume-Rhizobium symbiosis. Plant Physiol. 2007; 144(4): 2000–08. https://doi.org/10.1104/pp.107.096727
  58. Leonova NO, Tytova LV, Tantsyurenko EV, Antipchuk AF. [The physiological activity of soybean rhizobia (Bradyrhizobium japonicum) for the favonoids actions]. Sci. Bul. Chernovtsy Univ.: Collection of scientifc papers. Biology. 2005; 252: 132–39. Ukrainian.
  59. Leonova NO, Titova LV, Tantsyurenko EV, Antipchuk AF. [Glutamate dehydrogenase activity of Bradyrhizobium japonicum in the presence of phytoregulators]. Mikrobiol Z. 2006; 68(4): 21–7. Ukrainian.
  60. Iutynska GO, Tytova LV, Leonova NO, Brovko IS. [Activity of ammonium assimilation basic enzymes at Bradyrhizobium japonicum under infuence of plant favonoid inductors]. Mikrobiol Z. 2010; 72(6): 23–9. Ukrainian.